Advertisement

Russian Journal of Marine Biology

, Volume 44, Issue 3, pp 240–247 | Cite as

The Influence of Phytoplankton Primary Production on the Cycle of Biogenic Elements in the Coastal Waters off Sevastopol, Black Sea

  • V. N. Egorov
  • V. N. Popovichev
  • S. B. Gulin
  • N. I. Bobko
  • N. Yu. Rodionova
  • T. V. Tsarina
  • Yu. G. Marchenko
Original Papers

Abstract

The phytoplankton primary production and the biogenic elements content of the coastal waters off Sevastopol have been studied as a result of 2-year monitoring. It has been found that mineral phosphorus is a key factor of chemical limitation of the production processes. During primary production of organic matter, the habitat conditions for phytoplankton in the photic layer are in accordance with the Le Chatelier–Braun principle of negative feedback.

Keywords

coastal waters Sevastopol primary production phytoplankton biogenic elements Le Chatelier–Braun principle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barinov, G.V., Exchange of 45Ca, 137Cs, and 144Ce between algae and seawater, Okeanologiya, 1965, vol. 5, no. 1, pp. 11–116.Google Scholar
  2. 2.
    Vedernikov, V.I., Peculiarities of distribution of primary production and chlorophyll in the Black Sea in the spring and summer periods, Izmenchivost’ ekosistemy Chyornogo morya: Yestestvennye i antropogennye faktory (Variability of the Black Sea Ecosystem: Natural and Anthropogenic Factors), Moscow: Nauka, 1991, pp. 128–147.Google Scholar
  3. 3.
    Vinogradov, M.E., Sapozhnikov, V.V., and Sushkina, E.A., Ekosistema Chyornogo morya (The Black Sea Ecosystem), Moscow: Nauka, 1992.Google Scholar
  4. 4.
    Vityuk, D.M., Vzveshennoye veshchestvo i ego biogennye komponenty (Suspended Matter and Its Biogenic Components), Kiev: Naukova Dumka, 1983.Google Scholar
  5. 5.
    Egorov, V.N., Biogeochemical mechanisms of realization of compensatory homeostasis in the Black Sea ecosystems, Morsk. Ekol. Zh., 2012, vol. 11, no. 4, pp. 4–17.Google Scholar
  6. 6.
    Egorov, V.N., Zesenko, A.Ya., Parkhomenko, A.V., and Finenko, Z.Z., Mathematical description of the kinetics of mineral phosphorus exchange by unicellular algae, Gidrobiol. Zh., 1982, vol. 18, no. 4, pp. 45–50.Google Scholar
  7. 7.
    Egorov, V.N., Popovichev, V.N., Burlakova, Z.P., et al., Mathematical model for the biosedimentation function of ecosystem in the photic layer of the western halistatics of the Black Sea, in Molismologiya Chyornogo morya (Molismology of the Black Sea), Kyiv: Naukova Dumka, 1992, pp. 38–50.Google Scholar
  8. 8.
    Zaitsev, Yu.P., The ecological condition of the Black Sea shelf zone off the Ukraine coast (overview), Gidrobiol. Zh., 1992, vol. 28, no. 4, pp. 3–18.Google Scholar
  9. 9.
    Zilov, E.A., Gidrobiologiya i vodnaya ekologiya (organizatsiya, funktsionirovaniye i zagryazneniye vodnykh ekosistem) (Hydrobiology and Aquatic Ecology (Organization, Functions, and Pollution of Aquatic Ecosystems), Irkutsk: Irkutsk. Gos. Univ., 2009.Google Scholar
  10. 10.
    Ignatieva, O.G., Status of the Sevastopol Bay’s carbonate system components by the data of expeditions in 2006–2007, Morsk. Ekol. Zh., 2009, vol. 2, pp. 37–48.Google Scholar
  11. 11.
    Kiselyov, I.A., Plankton morei i kontinental’nykh vodoyomov, T. 2._Raspredelenie, sezonnaya dinamika, pitaniye i znachenie (Plankton of Seas and Continental Waterbodies, Vol. 2: Distribution, Seasonal Dynamics, Nutrition, and Importance), Leningrad: Nauka, 1980.Google Scholar
  12. 12.
    Kitaev, S.P., Ekologicheskiye osnovy bioproduktivnosti ozer raznykh prirodnykh zon (The Ecological Bases of Bioproductivity of Lakes in Different Natural Zones), Moscow: Nauka, 1984.Google Scholar
  13. 13.
    Metodicheskoye posobiye po opredeleniyu pervichnoi produktsii organicheskogo veshchestva v vodoyomakh radiouglerodnym metodom (A Methodological Guide to Measuring the Primary Production of Organic Matter in a Waterbody Using the Radiocarbon Method), Minsk: Beloruss. Gos. Univ., 1960.Google Scholar
  14. 14.
    Patton, A.R., Biochemical Energetics and Kinetics, Philadelphia, Pa.: Saunders, 1965.Google Scholar
  15. 15.
    Polikarpov, G.G., Radioekologiya morskikh organizmov (Radioecology of Marine Organisms), Moscow: Atomizdat, 1964.Google Scholar
  16. 16.
    Polikarpov, G.G. and Egorov, V.N., Morskaya dinamicheskaya radiokhemoekologiya (Marine Dynamic Radio-Chemoecology), Moscow: Energoatomizdat, 1986.Google Scholar
  17. 17.
    Popovichev, V.N. and Egorov, V.N., Absorption of mineral phosphorus by suspended matter of the photic layer, in Molismologiya Chyornogo morya (Molismology of the Black Sea), Kyiv: Naukova Dumka, 1992, pp. 62–69.Google Scholar
  18. 18.
    Popovichev, V.N. and Egorov, V.N., Biotic exchange of mineral phosphorus in the euphotic zone of the western Black Sea, in Chteniya pamyati N.V. Timofeeva- Resovskogo (Readings in Memoriam of N.V. Timofeev- Ressovskii), Sevastopol: EKOSI–Gidrofizika, 2000, pp. 140–158.Google Scholar
  19. 19.
    Popovichev, V.N. and Egorov, V.N., Phosphorus exchange of natural suspended matter in the Danube–Black Sea mixing zone, in Ekologicheskaya bezopasnost’ pribrezhnoi i shel’fovoi zon i kompleksnoye ispol’zovaniye resursov shel’fa (Ecological Safety of the Coastal and Shelf Zones and the Complex Management of Shelf Resources), Sevastopol: EKOSI–Gidrofizika, 2003, no. 8, pp. 98–104.Google Scholar
  20. 20.
    Popovichev, V.N. and Egorov, V.N., Exchange of mineral phosphorus by suspended matter in the photic zone of the Black Sea, in Radioekologicheskii otklik Chyornogo morya na Chernobyl’skuyu avariyu (The Radioecological Response of the Black Sea to the Chernobyl Accident), Sevastopol: EKOSI–Gidrofizika, 2008, ch. 6, pp. 548–574.Google Scholar
  21. 21.
    Raymont, J.E.G., Plankton and Productivity in the Oceans, Vol. 1: Phytoplankton, Oxford: Pergamon, 1980, 2nd ed.Google Scholar
  22. 22.
    Rukovodstvo po metodam khimicheskogo analiza morskikh vod (Guide to the Methods of Chemical Analysis of Marine Waters), Leningrad: Gidrometeoizdat, 1977.Google Scholar
  23. 23.
    Solomonova, E.S. and Akimov, A.I., Relation of live and dead components of suspension in some microalgae’ cultures in dependence on growth stage and different illumination, Morsk. Ekol. Zh., 2014, vol. 13, no. 1, pp. 73–81.Google Scholar
  24. 24.
    Sorokin, Yu.I. and Avdeev, V.A., Consumption and period of phosphate cycle in waters of the Black Sea, in Izmenchivost’ ekosistemy Chyornogo morya: Estestvennye i antropogennye faktory (Variability of the Black Sea Ecosystem: Natural and Anthropogenic Factors), Moscow: Nauka, 1991, pp. 153–157.Google Scholar
  25. 25.
    Stelmakh, L.V., Patterns of the growth of phytoplankton and its consumption by microzooplankton in the Black Sea, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Sevastopol, 2017.Google Scholar
  26. 26.
    Stelmakh, L.V. and Babich, I.I., Seasonal variability of the organic carbon to chlorophyll “a” ratio and factors its determining in phytoplankton of coastal waters of the Black Sea, Morsk. Ekol. Zh., 2006, vol. 5, no. 2, pp. 74–87.Google Scholar
  27. 27.
    Finkelshtein, M.S. and Pronenko, S.M., The trend of long-term variations in phosphate concentration in the western Black Sea, Ekol. Morya, 1991, no. 39, pp. 1–4.Google Scholar
  28. 28.
    Finenko, Z.Z., Suslin, V.V., and Churilova, T.Ya., The regional model to calculate the Black Sea primary production using satellite color scanner SeaWiFS, Morsk. Ekol. Zh., 2009, vol. 8, no. 1, pp. 81–106.Google Scholar
  29. 29.
    Hutchinson, G.E., A Treatise on Limnology, New York: Wiley, 1957, in 2 vols.Google Scholar
  30. 30.
    Khimicheskaya entsiklopediya (Chemical Encyclopedia), Moscow: Sovetskaya Entsiklopediya, 1988, vol. 1.Google Scholar
  31. 31.
    Yunev, O.A., Assessment of long-term variations in the annual primary production of phytoplankton in various areas of the Black Sea shelf, in Ekologicheskaya bezopasnost’ pribrezhnoi i shel’fovoi zon i kompleksnoye ispol’zovaniye resursov shel’fa (Ecological Safety of the Coastal and Shelf Zones and the Complex Management of Shelf Resources), Sevastopol: EKOSI–Gidrofizika, 2011, no. 25, pp. 311–326.Google Scholar
  32. 32.
    Droop, M.R., The nutrient status of algae cells in continuous culture, J. Mar. Biol. Assoc. U. K., 1974, vol. 54, no. 2, pp. 825–855.CrossRefGoogle Scholar
  33. 33.
    Redfield, A.C., The biological control of chemical factors in the environment, Am. Sci., 1958, vol. 46, pp. 205–221.Google Scholar
  34. 34.
    Stelmakh, L.V., Microzooplankton grazing impact on phytoplankton blooms in the coastal seawater of the Southern Crimea (Black Sea), Int. J. Mar. Sci., 2013, vol. 3, no. 15, pp. 121–127.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. N. Egorov
    • 1
  • V. N. Popovichev
    • 1
  • S. B. Gulin
    • 1
  • N. I. Bobko
    • 1
  • N. Yu. Rodionova
    • 1
  • T. V. Tsarina
    • 1
  • Yu. G. Marchenko
    • 1
  1. 1.Kovalevsky Institute of Marine Biological ResearchRussian Academy of SciencesSevastopolRussia

Personalised recommendations