Advertisement

Russian Journal of Marine Biology

, Volume 43, Issue 7, pp 568–582 | Cite as

A Comparative Study of the Far Eastern Seas and the Northern Pacific Ocean Based on Integral Parameters of Net Zooplankton in the Epipelagic Layer

  • I. V. Volvenko
Article
  • 21 Downloads

Abstract

Integral parameters of zooplankton community, including species diversity and its components were compared between the Chukchi Sea, Bering Sea, Sea of Okhotsk, Sea of Japan, and adjacent Pacific waters based on the data obtained by standard Juday net with a mouth area of 0.1 m2 during the large-scale surveys conducted by the Pacific Fisheries Research Center (TINRO Center) in 1984–2013. These parameters were calculated for the total surveyed area of approximately 7.0 million km2 and separately for each of the considered water bodies. In Pacific waters, species richness is higher than that in all the seas, while the concentration of individuals (expressed in terms of abundance, ind./m3) and evenness of their distribution over species were lower. The only sea with a larger mean size of organisms compared to the ocean is the Bering Sea. A lower species diversity than in the ocean has been recorded only from the Chukchi Sea; a lower density (in terms of biomass, g/m3) was determined only from the Sea of Japan. Among the four seas, the Chukchi Sea ranks first in terms of biomass and abundance of zooplankton, second in species evenness, third in the mean size of individuals, and last in species richness and diversity. The Bering Sea ranks first in terms of mean size of plankton organisms, second in species richness, diversity, and biomass, third in abundance, and last in species evenness. The Sea of Okhotsk ranks second in terms of mean size of individuals, last in their abundance, and third in the other parameters. The Sea of Japan ranks first in terms of species richness, evenness, and diversity, second in abundance, and last in mean size of zooplankton organisms, and, therefore, their biomass. The biomass of zooplankton, in accordance with the concentration of nutrients, increases in the southto-north direction (while its absolute abundance depends largely on the size of the body of water). The mean size of organisms increases in the same direction; the evenness of their distribution over species increases in the reverse direction (with the exception of both parameters for the Chukchi Sea). The rank of a water body for its biodiversity coincides with the species richness rank. The latter increases from north to south (except for the Okhotsk Sea), but greatly depends on the surveyed area and, even more, on the surveyed volume of water. A study of the literature data found some unexpected statistically significant relationships of the integral parameters of zooplankton with those of pelagic and bottom macrofauna, as well as with the parameters of zooplankton production, on the size of the considered bodies of water. The causes and the biological meanings of most of these relationships still do not have any rational interpretation. Their testing at other spatial scales will be continued in future works.

Keywords

comparative study North Pacific East Arctic zooplankton abundance species richness species diversity species evenness size of animals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bogorov, V.G., The biological productivity of the ocean and specifics of its geographic distribution, Vopr. Geogr., 1970, no. 84, pp. 80–102.Google Scholar
  2. 2.
    Bocharov, L.N., The perspective approach to the problem of people supply with fishery products, Izv. Tikhookean. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 2004, vol. 138, pp. 3–18.Google Scholar
  3. 3.
    Bocharov, L.N., The development of the fisheries science in the Far East. The objectives and specifics of the present stage, in TINRO–85. Itogi desyatiletnei deyatel’nosti. 2000–2010 gg. (TINRO–85. The Results of a Decade of Activity. 2000–2010), Vladivostok: Tikhookean. Nauchno–Issled. Rybokhoz. Tsentr, 2010, pp. 3–24.Google Scholar
  4. 4.
    Volvenko, I.V., Species richness of the North-West Pacific pelagic macrofauna, Izv. Tikhookean. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 2008, vol. 153, pp. 49–87.Google Scholar
  5. 5.
    Volvenko, I.V., Species diversity of the North-West Pacific pelagic macrofauna, Izv. Tikhookean. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 2007, vol. 149, pp. 21–63.Google Scholar
  6. 6.
    Volvenko, I.V., Comparative status of the Far-Eastern Seas and North-West Pacific on the set of integrative parameters of pelagic macrofauna, Izv. Tikhookean. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 2009, vol. 159, pp. 35–42.Google Scholar
  7. 7.
    Volvenko, I.V., Species structure evenness of the North-West Pacific pelagic macrofauna: 1. Number equitability, Izv. Tikhookean. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 2009, vol. 156, pp. 3–26.Google Scholar
  8. 8.
    Volvenko, I.V., Dataware support of comprehensive studies of Northwestern Pacific aquatic biological resources, Part 1: Concept, background, beginning of implementation, Tr. Vseross. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 2015, vol. 156, pp. 38–66.Google Scholar
  9. 9.
    Volvenko, I.V., Dataware support of comprehensive studies of Northwestern Pacific aquatic biological resources, Part 2: Databases, knowledge bases, automated workplaces, Tr. Vseross. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 2015, vol. 157, pp. 71–99.Google Scholar
  10. 10.
    Volvenko, I.V., Dataware support of comprehensive studies of Northwestern Pacific aquatic biological resources, Part 3: GIS, atlases, reference books, further prospects of the concept, Tr. Vseross. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 2015, vol. 157, pp. 100–126.Google Scholar
  11. 11.
    Volvenko, I.V., First experience of using a new database on net zooplankton in the Far-Eastern Seas and adjacent Pacific waters, Izv. Tikhookean. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 2016, vol. 187, pp. 3–18.Google Scholar
  12. 12.
    Volvenko, I.V., Comparison of the Far-Eastern Seas and North-West Pacific by integral characteristics of pelagic and benthic trawled macrofauna, Izv. Tikhookean. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 2014, vol. 178, pp. 58–67.Google Scholar
  13. 13.
    Volvenko, I.V., New database of bottom trawl stations performed in the Far-Eastern Seas and the North Pacific in 1977–2010, Izv. Tikhookean. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 2014, vol. 177, pp. 3–24.Google Scholar
  14. 14.
    Volvenko, I.V. and Kulik, V.V., Updated and expanded database of pelagic trawl surveys in the Far Eastern Seas and North Pacific for 1979–2009, Izv. Tikhookean. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 2011, vol. 164, pp. 3–26.Google Scholar
  15. 15.
    Volkov, A.F., Integral values of biomass and stock of zooplankton in the epipelagic layer of the area 71 in the North Pacific, including the Bering and Okhotsk Seas, and patterns of distribution for mass species, Izv. Tikhookean. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 2015, vol. 180, pp. 140–160.Google Scholar
  16. 16.
    Volkov, A.F., Technique of collecting and processing the samples of plankton and the samples on nekton feeding (step-by-step instructions), Izv. Tikhookean. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 2008, vol. 154, pp. 405–416.Google Scholar
  17. 17.
    Volkov, A.F., On the method of zooplankton sampling, Izv. Tikhookean. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 1996, vol. 119, pp. 306–311.Google Scholar
  18. 18.
    Gershanovich, D.E., Elizarov, A.A., and Sapozhnikov, V.V., Bioproduktivnost’ okeana (Bioproductivity of the Ocean), Moscow: Agropromizdat, 1990.Google Scholar
  19. 19.
    Draper, N.R. and Smith, H., Applied Regression Analysis, 2nd ed., New York: Wiley, 1981. (Translated under the title Prikladnoi regressionnyi analiz, Moscow: Finansy i Statistika, 1986, vol. 1).Google Scholar
  20. 20.
    Draper, N.R. and Smith, H., Applied Regression Analysis, New York: Wiley, 1981, 2nd ed.Google Scholar
  21. 21.
    Dulepova, E.P., Sravnitel’naya bioproduktivnost’ makroekosistem dal’nevostochnykh morei (Comparative Bioproductivity of Macroecosystems in the Far Eastern Seas), Vladivostok: Tikhookean. Nauchno–Issled. Rybokhoz. Tsentr, 2002.Google Scholar
  22. 22.
    Zenkevich, L.A., Biologiya morei SSSR (Biology of the Seas of the USSR), Moscow: Akad. Nauk SSSR, 1963.Google Scholar
  23. 23.
    Kafanov, A.I. and Kudryashov, V.A., Morskaya biogeografiya (Marine Biogeography), Moscow: Nauka, 2000.Google Scholar
  24. 24.
    Lukin, E.I., Darvinizm i geograficheskie zakonomernosti v izmenenii organizmov (Darwinism and Geographic Patterns in Modification of Organisms), Moscow: Akad. Nauk SSSR, 1940.Google Scholar
  25. 25.
    Mayr, E., Animal Species and Evolution, Cambridge: Harvard Univ. Press, 1963.CrossRefGoogle Scholar
  26. 26.
    Mina, M.V. and Klevezal’, G.A., Rost zhivotnykh. Analiz na urovne organizma (Growth of Animals. Analysis at the Level of Organism), Moscow: Nauka, 1976.Google Scholar
  27. 27.
    Moiseev, P.A., Biologicheskie resursy Mirovogo okeana (Biological Resources of the World Ocean), Moscow: Pishchevaya Promyshlennost’, 1969.Google Scholar
  28. 28.
    Odum, E., Basic Ecology, Philadelphia: Saunders College Publ., 1983.Google Scholar
  29. 29.
    Pesenko, Yu.A., Printsipy i metody kolichestvennogo analiza v faunisticheskikh issledovaniyakh (Principles and Methods of Quantitative Analysis in Faunistic Studies), Moscow: Nauka, 1982.Google Scholar
  30. 30.
    Volkov, A.F., Rekomendatsii po ekspress-obrabotke setnogo planktona v more (Recommendations on the Technique of Rapid Processing of Net Plankton at Sea), Vladivostok: Tikhookean. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 1984.Google Scholar
  31. 31.
    Dolganova, N.T. and Volvenko, I.V., Setnoi zooplankton zaliva Petra Velikogo (Yaponskoe more): tablitsy vstrechaemosti, chislennosti i biomassy. 1988–2013 (Net Zooplankton in Peter the Great Bay (Sea of Japan): Tables of Occurrence, Abundance, and Biomass. 1988–2013), Shuntov, V.P. and Bocharov, L.N., Eds., Vladivostok: Tikhookean. Nauchno–Issled. Rybokhoz. Tsentr (in press).Google Scholar
  32. 32.
    Volkov, A.F. and Volvenko, I.V., Setnoi zooplankton zapadnoi chasti Beringova morya: tablitsy vstrechaemosti, chislennosti i biomassy. 1986–2013 (Net Zooplankton in the Western Bering Sea: Tables of Occurrence, Abundance, and Biomass. 1986–2013), Shuntov, V.P. and Bocharov, L.N., Eds., Vladivostok: Tikhookean. Nauchno–Issled. Rybokhoz. Tsentr (in press).Google Scholar
  33. 33.
    Volkov, A.F. and Volvenko, I.V., Setnoi zooplankton Okhotskogo morya: tablitsy vstrechaemosti, chislennosti i biomassy. 1984–2013 (Net Zooplankton in the Sea of Okhotsk: Tables of Occurrence, Abundance, and Biomass. 1984–2013), Shuntov, V.P. and Bocharov, L.N., Eds., Vladivostok: Tikhookean. Nauchno–Issled. Rybokhoz. Tsentr (in press).Google Scholar
  34. 34.
    Volkov, A.F. and Volvenko, I.V., Setnoi zooplankton severo-zapadnoi chasti Tikhogo okeana: tablitsy vstrechaemosti, chislennosti i biomassy. 1985–2013 (Net Zooplankton in the Northwestern Pacific Ocean: Tables of Occurrence, Abundance, and Biomass. 1985–2013), Shuntov, V.P. and Bocharov, L.N., Eds., Vladivostok: Tikhookean. Nauchno–Issled. Rybokhoz. Tsentr (in press).Google Scholar
  35. 35.
    Dolganova, N.T. and Volvenko, I.V., Setnoi zooplankton severo-zapadnoi chasti Yaponskogo morya: tablitsy vstrechaemosti, chislennosti i biomassy. 1985–2013 (Net Zooplankton in the Northwestern Sea of Japan: Tables of Occurrence, Abundance, and Biomass. 1985–2013), Shuntov, V.P. and Bocharov, L.N., Eds., Vladivostok: Tikhookean. Nauchno–Issled. Rybokhoz. Tsentr (in press).Google Scholar
  36. 36.
    Shuntov, V.P., Biologiya dal’nevostochnykh morei Rossii (Biology of the Far Eastern Seas of Russia), Vladivostok: Tikhookean. Nauchno–Issled. Rybokhoz. Tsentr, 2001, vol.1.Google Scholar
  37. 37.
    Shuntov, V.P., Biologiya dal’nevostochnykh morei Rossii (Biology of the Far Eastern Seas of Russia), Vladivostok: Tikhookean. Nauchno–Issled. Rybokhoz. Tsentr, 2016, vol.2.Google Scholar
  38. 38.
    Shuntov, V.P., New data on rearrangements in pelagic ecosystems of the Far Eastern seas, Vestn. Dal’nevost. Otd. Ross. Akad. Nauk, 1994, no. 2, pp. 59–66.Google Scholar
  39. 39.
    Shuntov, V.P., Rearrangements in pelagic ecosystems of the Sea of Okhotsk are the actual fact, Rybn. Khoz., 1998, no. 1, pp. 25–27.Google Scholar
  40. 40.
    Shuntov, V.P. and Volvenko, I.V., Comparative analysis of the macrofauna abundance in the pelagic and benthic zones of the Far East seas and adjacent waters of the Pacific Ocean, Vopr. Rybolov., 2016, vol. 17, no. 2, pp. 133–147.Google Scholar
  41. 41.
    Shuntov, V.P., Dulepova, E.P., Temnykh, O.S., et al., The state of biological resources in connection with the dynamics of macroecosystems in the Far Eastern Russian economic zone, in Dinamika morskikh ekosistem i sovremennye problemy sokhraneniya biologicheskogo potentsiala morei Rossii (Dynamics in Marine Ecosystems and the Current Problems of Conservation of the Biological Potential of the Russian Seas), Vladivostok: Dal’nauka, 2007, pp. 75–176.Google Scholar
  42. 42.
    Shuntov, V.P., Radchenko, V.I., Dulepova, E.P., and Temnykh, O.S., Biological resources of the Far Eastern Russian economic zone: the structure of pelagic and benthic communities, the current status, and the trends of long-term dynamics, Izv. Tikhookean. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 1997, vol. 122, pp. 3–15.Google Scholar
  43. 43.
    Shuntov, V.P. and Temnykh, O.S., Modern rearrangements in marine ecosystems related with climate changes: is this a priority of global or regional factors?, Byulleten’ no. 6 izuch. tikhookean. lososei Dal’nem Vostoke (Bulletin No. 6 on the Study of Pacific Salmons in Far East), Vladivostok: Tikhookean. Nauchno–Issled. Rybokhoz. Tsentr, 2011, pp. 49–64.Google Scholar
  44. 44.
    Allen, A.P. and Gillooly, J.F., Assessing latitudinal gradients in speciation rates and biodiversity at the global scale, Ecol. Lett., 2006, vol. 9, no. 8, pp. 947–954.CrossRefPubMedGoogle Scholar
  45. 45.
    Angilletta, M.J. and Dunham, A.E., The temperaturesize rule in ectotherms: Simple evolutionary explanations may not be general, Am. Nat., 2003, vol. 162, no. 3, pp. 332–342.CrossRefPubMedGoogle Scholar
  46. 46.
    Arrhenius, O., Species and area, J. Ecol., 1921, vol. 9, no. 1, pp. 95–99.CrossRefGoogle Scholar
  47. 47.
    Atkinson, D., Temperature and organism size: a biological law for ectotherms?, Adv. Ecol. Res., 1994, vol. 25, pp. 1–58.CrossRefGoogle Scholar
  48. 48.
    Barrantes, G. and Sandoval, L., Conceptual and statistical problems associated with the use of diversity indices in ecology, Rev. Biol. Trop., 2009, vol. 57, no. 3, pp. 451–460.PubMedGoogle Scholar
  49. 49.
    Bergmann, C., Uber die Verhaltnisse der Warmeokonomie der Tiere zu ihrer Grosse, Gott. Stud., 1847, vol. 1, pp. 595–708.Google Scholar
  50. 50.
    Briggs, J.C., Global Biogeography, Amsterdam: Elsevier, 1995.Google Scholar
  51. 51.
    Connor, E.F. and McCoy, E.D., The statistics and biology of the species–area relationship, Am. Nat., 1979, vol. 113, no. 6, pp. 791–833.CrossRefGoogle Scholar
  52. 52.
    Fischer, A.G., Latitudinal variation in organic diversity, Evolution, 1960, vol. 14, pp. 64–81.CrossRefGoogle Scholar
  53. 53.
    Gleason, H.A., On the relation between species and area, Ecology, 1922, vol. 3, no. 2, pp. 158–162.CrossRefGoogle Scholar
  54. 54.
    Hairston, N.G., Allan, J.D., Colwell, R.K., et al., The relationship between species diversity and stability: an experimental approach with protozoa and bacteria, Ecology, 1968, vol. 49, no. 6, pp. 1091–1101.CrossRefGoogle Scholar
  55. 55.
    Hillebrand, H., On the generality of the latitudinal diversity gradient, Am. Nat., 2004, vol. 163, no. 2, pp. 192–211.CrossRefPubMedGoogle Scholar
  56. 56.
    Humboldt, A., Ansichten der Natur mit Wissenschaftlichen Erlauterungen, Tubingen: Cotta, 1808.Google Scholar
  57. 57.
    Hurlbert, S.H., The nonconcept of species diversity: a critique and alternative parameters, Ecology, 1971, vol. 52, no. 4, pp. 577–586.CrossRefPubMedGoogle Scholar
  58. 58.
    Jaccard, P., Nouvelles recherches sur la distribution forale, Bull. Soc. Vaudoise Sci. Nat., 1908, vol. 44, pp. 223–270.Google Scholar
  59. 59.
    James, F.C. and Rathbun, S., Rarefaction, relative abundance, and diversity of avian communities, The Auk, 1981, vol. 98, pp. 785–800.Google Scholar
  60. 60.
    Kricher, J.C., Bird species diversity: the effect of species richness and equitability on the diversity index, Ecology, 1972, vol. 53, no. 2, pp. 278–282.CrossRefGoogle Scholar
  61. 61.
    Lomolino, M.V., The species–area relationship: new challenges for an old pattern, Prog. Phys. Geogr., 2001, vol. 25, no. 1, pp. 1–21.Google Scholar
  62. 62.
    Lundholm, J.T. and Larson, D.W., Relationships between spatial environmental heterogeneity and plant species diversity on a limestone pavement, Ecography, 2003, vol. 26, no. 6, pp. 715–722.CrossRefGoogle Scholar
  63. 63.
    Ma, M., Plant Species Diversity of Buffer Zones in Agricultural Landscapes: In Search of Determinants from the Local to Regional Scale, D.Ph. Thesis, Helsinki: Univ. Helsinki, 2006.Google Scholar
  64. 64.
    Mayr, E., Geographic character gradients and climatic adaptation, Evolution, 1956, vol. 10, pp. 105–108.CrossRefGoogle Scholar
  65. 65.
    McNaughton, S.J., Diversity and stability of ecological communities: A comment on the role of empiricism in ecology, Am. Nat., 1977, vol. 111, no. 979, pp. 515–525.CrossRefGoogle Scholar
  66. 66.
    Pianka, E.R., Latitudinal gradients in species diversity: A review of concepts, Am. Nat., 1966, vol. 100, no. 910, pp. 33–46.CrossRefGoogle Scholar
  67. 67.
    Pielou, E.C., The measurement of diversity in different types of biological collections, J. Theor. Biol., 1966, vol. 13, pp. 131–144.CrossRefGoogle Scholar
  68. 68.
    Preston, F.W., The commonness and rarity of species, Ecology, 1948, vol. 29, no. 3, pp. 254–283.CrossRefGoogle Scholar
  69. 69.
    Rainey, P.B. and Travisano, M., Adaptive radiation in a heterogeneous environment, Nature, 1998, vol. 394, pp. 69–72.CrossRefPubMedGoogle Scholar
  70. 70.
    Shannon, C.E., A mathematical theory of communication, Bell Syst. Tech. J., 1948, vol. 27, pp. 379–423, 623–656.CrossRefGoogle Scholar
  71. 71.
    Shuntov, V.P., Dulepova, E.P., Radchenko, V.I., and Temnykh, O.S., On the beginning of large reformations in communities of plankton and nekton of the Far-Eastern Seas, Abstr. Second Annu. Meet. North. Pac. Mar. Sci. Org. (PICES), Seattle, 1993, p.35.Google Scholar
  72. 72.
    Stempniewicz, L., Blachowiak-Samolyk, K., and Weslawski, J.M., Impact of climate change on zooplankton communities, seabird populations and arctic terrestrial ecosystem–A scenario, Deep Sea Res., Part II, 2007, vol. 54, pp. 2934–2945.CrossRefGoogle Scholar
  73. 73.
    Tittensor, D.P., Mora, C., Jetz, W., et al., Global patterns and predictors of marine biodiversity across taxa, Nature, 2010, vol. 466, pp. 1098–1103.CrossRefPubMedGoogle Scholar
  74. 74.
    Tjorve, E., Shapes and functions of species–area curves: A review of possible models, J. Biogeogr., 2003, vol. 30, pp. 827–835.CrossRefGoogle Scholar
  75. 75.
    Tramer, E.J., Bird species diversity: Components of Shannon’s formula, Ecology, 1969, vol. 50, no. 5, pp. 927–929.CrossRefGoogle Scholar
  76. 76.
    Volvenko, I.V., Extremal principles and goal functions of biocenotic systems, Biophysics, 2012, vol. 57, no. 3, pp. 350–362.CrossRefGoogle Scholar
  77. 77.
    Volvenko, I.V., The comparative statuses of the Far Eastern seas and the northwestern Pacific Ocean based on the range of integral characteristics of pelagic and bottom trawl macrofauna, J. Asia-Pac. Biodiversity, 2015, vol. 8, pp. 31–37.CrossRefGoogle Scholar
  78. 78.
    Volvenko, I.V., The new large database of the Russian bottom trawl surveys in the Far Eastern Seas and the North Pacific Ocean in 1977–2010, Int. J. Environ. Monit. Anal., 2014, vol. 2, no. 6, pp. 302–312.CrossRefGoogle Scholar
  79. 79.
    Wallace, A.R., Tropical Nature and Other Essays, London: Macmillan, 1878.CrossRefGoogle Scholar
  80. 80.
    Watson, H.C., Remarks on the Geographical Distribution of British Plants; Chiefly in Connection with Latitude, Elevation, and Climate, London: Longmans, 1835.CrossRefGoogle Scholar
  81. 81.
    Wilsey, B. and Stirling, G., Species richness and evenness respond in a different manner to propagule density in developing prairie microcosm communities, Plant Ecol., 2007, vol. 190, pp. 259–273.CrossRefGoogle Scholar
  82. 82.
    Wilsey, B.J., Chalcraft, D.R., Bowles, C.M., and Willig, M.R., Relationships among indices suggest that richness is an incomplete surrogate for grassland biodiversity, Ecology, 2005, vol. 86, no. 5, pp. 1178–1184.CrossRefGoogle Scholar
  83. 83.
    Wilsey, B.J. and Potvin, C., Biodiversity and ecosystem functioning: the importance of species evenness in an old field, Ecology, 2000, vol. 81, no. 4, pp. 887–892.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Pacific Research Fisheries CenterVladivostokRussia

Personalised recommendations