Russian Journal of Marine Biology

, Volume 43, Issue 7, pp 555–567 | Cite as

The Distribution of Macrozoobenthos Taxa, as Potential Indicators of Vulnerable Marine Ecosystems in the Western Bering Sea: 1. Anadyr Bay Area

  • V. A. Nadtochy
  • N. V. Kolpakov
  • I. A. Korneichuk
Article
  • 23 Downloads

Abstract

The composition of common species in some macrozoobenthos groups that are considered as potential indicators of vulnerable marine ecosystems (VME), in the Anadyr Bay area, Bering Sea have been determined based on the results of four benthic surveys using a benthic grab sampler (1985, 2005) and a bottom trawl (2008, 2012). These are soft corals (Gersemia rubiformis), sponges (Myxilla incrustans, Halichondria panicea, and Semisuberites cribrosa), ascidians (Halocynthia aurantium and Boltenia ovifera), bryozoans (Cystisella saccata and Flustra foliacea), barnacles (Chirona evermanni), and the brittle star (Gorgonocephalus eucnemis). The distribution of these animals has been mapped. Aggregations of immobile sestonophages (the former five groups) are formed on hard coarse-grained and mixed sediments in waters with higher hydrodynamic activity (along the southwestern and northeastern coasts of the Anadyr Bay, mainly at depths of 80–90 m). In some cases, sponges and bryozoans in the southern part of the area can descend to a depth of 250 m (in the Navarin Canyon). The mobile filterer G. eucnemis forms aggregations mainly on soft sediments in the central part of Anadyr Bay, at depths of 50–270 m, in the area of a localized spot of near-bottom cold water. According to the results of trawl surveys conducted in 2008 and 2012, the mean biomass of the sponges, the brittle star G. eucnemis, and the sea squirt B. ovifera did not change, whereas the mean biomass of the barnacle Ch. evermanni and sea peach H. aurantium decreased by 6.5 and 3.7 times, respectively. Since the level of trawl fishing activity in the region is not high, the hypothesis has been proposed that the decrease in the abundance of the latter two species is presumably caused by the natural dynamics of their population or can be related to the factor of randomness, as these species are caught in their mosaically distributed local aggregations.

Keywords

vulnerable marine ecosystem (VME) Anadyr Bay macrozoobenthos distribution dynamics of abundance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antonov, N.P., Klovach, N.V., Orlov, A.M., et al., Fisheries in the Far Eastern Fishery Basin in 2013, Tr. Vseross. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 2016, vol. 160, pp. 133–211.Google Scholar
  2. 2.
    Borets, L.A., Donnye ikhtiotseny rossiiskogo shel’fa dal’nevostochnykh morei: sostav, struktura, elementy funktsionirovaniya i promyslovoye znacheniye (Benthic Ichthyocoenes on the Russian Shelf of the Far Eastern Seas: Composition, Structure, Functioning Elements, and Commercial Significance), Vladivostok: TINROTsentr, 1997.Google Scholar
  3. 3.
    Verkhunov, A.V., The role of hydrological and hydrochemical processes on the Bering Sea shelf in the formation of bioproductivity, in Kompleksnye issledovaniya ecosystemy Beringova morya (The Complex Studies of the Bering Sea Ecosystem), Moscow: VNIRO, 1995, pp. 52–79.Google Scholar
  4. 4.
    Vinogradova, N.G., Materials on quantitative survey of the benthic fauna in some bays of the Sea of Okhotsk and the Bering Sea, Tr. Inst. Okeanol. im. P. P. Shirshova, Akad. Nauk SSSR, 1954, vol. 9, pp. 136–158.Google Scholar
  5. 5.
    Vozdeistvie tralovogo promysla na donnye ekosistemy Barentseva morya i vozmozhnosti snizheniya urovnya negativnykh posledstvii (The Impact of Trawl Fisheries on Benthic Ecosystems in the Barents Sea and the Possibility to Reduce the Level of Negative Consequences), Denisenko, S.G. and Zgurovskii, K.A., Eds., Murmansk: World Wildl. Fund, 2013.Google Scholar
  6. 6.
    Volvenko, I.V., Analysis of the rate of alternativeness in abundance dynamics of different species in the case of absent continuous long time series data: an example of the Okhotsk Sea nekton, Izv. Tikhookean. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 2004, vol. 139, pp. 78–90.Google Scholar
  7. 7.
    Datsky, A.V. and Andronov, P.Yu., Ikhtiotsen verkhnego shel’fa severo-zapadnoi chasti Beringova morya (The Ichthyocene on the Upper Shelf of the Northwestern Bering Sea), Magadan: Sev.-Vost. Nauchn. Tsentr, Dal’nevost. Otd., Ross. Akad. Nauk, 2007.Google Scholar
  8. 8.
    Denisenko, S.G., Zoobenthos of the Barents Sea in the conditions of changing climate and anthropogenic impact, in Dinamika morskikh ekosistem i sovremennye problemy sokhraneniya biologicheskogo potentsiala morei Rossii: v ramkakh podprogrammy “Issledovanie prirody Mirovogo okeana” Federal’noi tselevoi programmy “Mirovoi okean,” II etap (2003–2007 gg.) (Dynamics of Marine Ecosystems and the Current Problems of Conservation of the Biological Potential in the Russian Seas: Within the Framework of the Subprogram “Study of Nature of the World Ocean” of the Federal Target Program “The World Ocean,” Phase II (2003–2007), Vladivostok: Dal’nauka, 2007, pp. 418–511.Google Scholar
  9. 9.
    Denisenko, S.G., Macrozoobenthos of the Barents Sea under the conditions of changing climate and anthropogenic impact, Extended Abstract of Doctoral (Biol.) Dissertation, St. Petersburg: Zool. Inst., Russ. Acad. Sci., 2008.Google Scholar
  10. 10.
    Zavarzin, G.A., The antipode of the noosphere, Vestn. Ross. Akad. Nauk, 2003, vol. 73, no. 7, pp. 627–636.Google Scholar
  11. 11.
    Kivva, K.K., Hydrochemical conditions of primary production in the Bering Sea, Cand. Sci. (Geogr.) Dissertation, Moscow: Moscow State Univ., 2016.Google Scholar
  12. 12.
    Koblikov, V.N. and Nadtochy, V.A., Macrozoobenthos of the shelf of the northwestern part of the Bering Sea, Izv. Tikhookean. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 2002, vol. 130, no. 1(1), pp. 329–335.Google Scholar
  13. 13.
    Nadtochy, V.A., Budnikova, L.L., and Bezrukov, R.G., Some results of benthos researches in the Russian Far Eastern Seas: Composition and quantitative distribution (Bering Sea), Izv. Tikhookean. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 2008, vol. 153, pp. 264–282.Google Scholar
  14. 14.
    Neiman, A.A., Quantitative distribution of benthos on the shelf and upper horizons of the slope in the eastern part of the Bering Sea, Tr. Vses. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 1963, vol. 48, no. 1, pp. 145–205.Google Scholar
  15. 15.
    Sapozhnikov, V.V., Ivanova, O.S., and Mordasova, N.V., Identification of local upwelling zones in the Bering Sea using hydrochemical parameters, Oceanology (Engl. Transl.), 2011, vol. 51, no. 2, pp. 247–254.Google Scholar
  16. 16.
    Khen, G.V. and Zavolokin, A.V., Change in water circulation and its implication for distribution and abundance of salmons in the western Bering Sea in the early 21th century, Izv. Tikhookean. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 2015, vol. 181, pp. 95–115.Google Scholar
  17. 17.
    Shuntov, V.P., Biologiya dal’nevostochnykh morei Rossii (Biology of the Far Eastern Seas of Russia), Vladivostok: TINRO-Tsentr, 2001, vol.1.Google Scholar
  18. 18.
    Barrio Froján, C.R.S., Maclsaac, K.G., McMillan, A.K., et al., An evaluation of benthic community structure in and around the Sackville Spur closed area (Northwest Atlantic) in relation to the protection of vulnerable marine ecosystems, ICES J. Mar. Sci., 2012, vol. 69, issue 2, pp. 213–222.CrossRefGoogle Scholar
  19. 19.
    Bergman, M.J.N. and Hup, M., Direct effects of beam trawling on macrofauna in a sandy segment in the southern North Sea, ICES J. Mar. Sci., 1992, vol. 49, pp. 5–11.CrossRefGoogle Scholar
  20. 20.
    Bergman, M.J.N. and Van Santbrink, J.W., Fishing mortality of populations of megafauna in sandy sediments, in The Effects of Fishing on Non-target Species and Habitats. Biological, Conservation and Socio-economic Issues, Kaiser, M.J. and de Groot, S.J., Eds., Oxford: Blackwell, 2000, pp. 49–68.Google Scholar
  21. 21.
    Browman, H.I. and Stergiou, K.I., Perspectives on ecosystem-based approaches to the management of marine resources. Introduction, Mar. Ecol.: Prog. Ser., 2004, vol. 274, pp. 269–303.CrossRefGoogle Scholar
  22. 22.
    de Groot, S.J., The impact of bottom trawling on benthic fauna of the North Sea, Ocean Manage., 1984, vol. 9, no. 3, pp. 177–190.CrossRefGoogle Scholar
  23. 23.
    Ereskovsky, A.V., Materials of the faunistic study of the White and Barents Seas sponges. 5. Quantitative distribution, Berl. Geowiss. Abh., 1995, no. 16, pp. 709–714.Google Scholar
  24. 24.
    Fabri, M.-C., Pedel, L., Beuck, L., et al., Megafauna of vulnerable marine ecosystems in French mediterranean submarine canyons: spatial distribution and anthropo genic impacts, Deep Sea Res., Part II, 2013, vol. 104, pp. 184–207. doi 10.1016/j.dsr2.2013.06.016CrossRefGoogle Scholar
  25. 25.
    Graham, M., Effect of trawling on animals of the sea bed, Deep-Sea Res., 1955, vol. 3, pp. 1–6.Google Scholar
  26. 26.
    Gullestad, P., Aglen, A., Bjordal, Å., et al., Changing attitudes 1970–2012: Evolution of the Norwegian management framework to prevent overfishing and to secure long-term sustainability, ICES J. Mar. Sci., 2014, vol. 71, no. 2, pp. 173–182.CrossRefGoogle Scholar
  27. 27.
    Hansson, M., Lindegarth, M., Valentinsson, D., and Ulmestrand, M., Effects of shrimp-trawling on abundance of benthic macrofauna in Gullmarsfjorden, Sweden, Mar. Ecol.: Prog. Ser., 2000, vol. 198, pp. 191–201.CrossRefGoogle Scholar
  28. 28.
    Hoel, A.H., von Quillfeldt, C., Skjolddal, H.R., et al., Ecosystem based management in the Arctic, in PAME, the Arctic Ocean Review Project, Final Report, Kiruna, 2013, pp. 64–74.Google Scholar
  29. 29.
    Jones, C.G., Lawton, J.H., and Shachak, M., Organisms as ecosystem engineers, Oikos, 1994, vol. 69, pp. 373–386.CrossRefGoogle Scholar
  30. 30.
    Jones, C.G., Lawton, J.H., and Shachak, M., Positive and negative effects of organisms as physical ecosystem engineers, Ecology, 1997, vol. 78, no. 7, pp. 1946–1957.CrossRefGoogle Scholar
  31. 31.
    Jørgensen, L.L., Planque, B., Thangstad, T.H., and Certain, G., Vulnerability of megabenthic species to trawling in the Barents Sea, ICES J. Mar. Sci., 2016, vol. 73, no. 1, pp. 84–97. doi 10.1093/icesjms/fsv107CrossRefGoogle Scholar
  32. 32.
    Kenchington, E., Murillo, F.J., Lirette, C., et al., Kernel density surface modelling as a means to identify significant concentrations of vulnerable marine ecosystem indicators, PLoS One, 2014, vol. 9, no. 10. doi 10.1371/journal.pone.0109365Google Scholar
  33. 33.
    Levin, P.S., Fogarty, M.J., Murawski, S.A., and Fluharty, D., Integrated ecosystem assessments: Developing the scientific basis for ecosystem-based management of the ocean, PLoS Biol., 2009, vol. 7, no. 1. doi 10.1371/journal.pbio.1000014Google Scholar
  34. 34.
    Lindeboom, H.J. and de Groot, S.J., Impact-II: The effects of different types of fisheries on the North Sea and Irish Sea benthic ecosystems, NIOZ-raport 1998-1/RIVO-DLO Report C003/98, Den Burg: Neth. Inst. Sea Res., 1998.Google Scholar
  35. 35.
    Løkkeborg, S., Impacts of trawling and scallop dredging on benthic habitats and communities, FAO Fish. Tech. Pap., 2005, no.472.Google Scholar
  36. 36.
    Nelson, C.H., Phillips, R.L., McRea, J., et al., Gray whale and Pacific walrus benthic feeding grounds and sea floor interaction in the Chukchi Sea, Technical Report for Minerals Management Service, Menlo Park: U.S. Geol. Surv., 1994, no. 14157.Google Scholar
  37. 37.
    Parker, S.J. and Bowden, D.A., Identifying taxonomic groups vulnerables to bottom longline fishing gear in the Ross Sea region, CCAMLR Sci., 2010, vol. 17, pp. 105–127.Google Scholar
  38. 38.
    Peterson, C.H., Summerson, H.C., and Fegley, S.R., Ecological consequences of mechanical harvesting of clams, Fish. Bull., 1987, vol. 85, no. 2, pp. 281–298.Google Scholar
  39. 39.
    Rijnsdorp, A.D. and van Leeuwen, P.I., Changes in growth of North Sea plaice since 1950 in relation to density, eutrophication, beam-trawl effort, and temperature, ICES J. Mar. Sci., 1996, vol. 53, pp. 1199–1213.CrossRefGoogle Scholar
  40. 40.
    Rogers, A.D., Clark, M.R., Hall-Spencer, J.M., and Gjerde, K.M., The Science Behind the Guidelines: A Scientific Guide to the FAO Draft International Guidelines (December 2007) for the Management of Deep-Sea Fisheries in the High Seas and Examples of How the Guidelines May Be Practically Implemented, Switzerland: Int. Union Conserv. Nat., 2008.Google Scholar
  41. 41.
    Report of the World Summit on Sustainable Development, Johannesburg, South Africa, 26 August–4 September 2002, New York: United Nations, 2002, no. A/CONF.199/20.Google Scholar
  42. 42.
    Oceans and the Law of the Sea in the General Assembly of the United Nations, Reports of the Secretary-General. http:// www.un.org/Depts/los/general_assembly/ general_assembly_reports.htm. Cited April 17, 2017.Google Scholar
  43. 43.
    International Guidelines for the Management of Deep-Sea Fisheries in the High Seas: Annex F of the Report of the Technical Consultation on International Guidelines for the Management of Deep-sea Fisheries in the High Seas, FAO Fish. Aquacult. Rep., 2009, no. 881.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. A. Nadtochy
    • 1
  • N. V. Kolpakov
    • 1
  • I. A. Korneichuk
    • 1
  1. 1.Pacific Research Fisheries CenterVladivostokRussia

Personalised recommendations