Advertisement

Russian Journal of Marine Biology

, Volume 43, Issue 4, pp 316–325 | Cite as

Divergence of the seasonal races of chum salmon, Oncorhynchus keta Walbaum, 1792, in the Amur and Poronai rivers: Ecology, genetics, and morphology

  • L. A. Zhivotovsky
  • A. E. Lapshina
  • P. B. Mikheev
  • E. V. Podorozhnyuk
  • O. I. Pasechnik
  • A. V. Mamaeva
  • T. A. Rakitskaya
  • G. A. Rubtsova
  • K. I. Afanasiev
  • M. V. Shitova
Population Ichthyology
  • 29 Downloads

Abstract

The chum salmon of the Amur River (the mainland part of the Far East) and the Poronai River (Terpeniya Bay, Sakhalin Island) are historically related to one another, as the drainage basins of these rivers are the remnants of a formerly single river system, the Paleoamur, which existed when Sakhalin Island was a part of the continent. Both river populations of chum salmon consist of the early-run and late-run ecological forms (seasonal races), which are also referred to as the summer and autumn races. They are reproductively isolated from each other due to their spawning at different times and in different types of spawning grounds. To assess the direction, pattern, and degree of divergence between these chum salmon races in the both river fragments since the Paleoamur, it is necessary to compare them using two types of traits: selectively neutral DNA markers and morphological and physiological traits, variations in which may have an adaptive value. For this, we have studied chum salmon from both rivers in terms of microsatellite DNA markers, body counts and measurements, body weight, and fecundity. Both in the Amur River and in the Poronai River, the autumn race of chum salmon prevails over the summer race in body length and weight, fecundity, number of pyloric caeca, and several other meristic traits. The intra-basin differences between the races are much more pronounced in the Amur chum salmon. The inter-race differences in microsatellites are also greater in the Amur chum salmon compared to the Poronai chum salmon. Using microsatellites, three levels of differentiation have been revealed: (1) between the basins of the Amur and Poronai rivers, (2) between the races within each of the river basins, (3) and between population samples within each race of each basin. A hypothesis is proposed that the currently existing races of chum salmon in the Amur and Poronai rivers have evolved since the breakup of the Paleoamur, and the intra-basin divergence of the races started in the Amur River earlier than in the Poronai River. An analysis of our own data and the published data suggests that the adaptation of the seasonal races of chum salmon to the conditions of their spawning grounds is determined by a complex of morphological and physiological traits, including the number of pyloric caeca, which is an adaptive and highly heritable trait associated with the incubation temperature of the water.

Keywords

Pacific salmon seasonal races population Far East microsatellite marker morphological and physiological traits pyloric caeca incubation temperature reproductive isolation genetic differentiation adaptation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Afanas’ev, K.I., Rubtsova, G.A., Shitova, M.V., et al., Population structure of chum salmon Oncorhynchus keta in the Russian Far East, as revealed by microsatellite markers, Russ. J. Mar. Biol., 2011, vol. 37, no. 1, pp. 42–51.CrossRefGoogle Scholar
  2. 2.
    Berg, L.S., Spring and winter races in diadromous fish, Izv. Akad. Nauk SSSR, Otd. Mat. Estestv. Nauk, 1934, vol. 5, pp. 711–732.Google Scholar
  3. 3.
    Berg, L.S., Ryby presnykh vod SSSR i sopredel’nykh stran (Fish of Freshwaters of the USSR and Adjacent Countries), Leningrad: Akad. Nauk SSSR, part 1, 4th ed.Google Scholar
  4. 4.
    Birman, I.B., Dynamics of the number and the current status of the stocks of chum and pink salmon in the Amur basin, Tr. Soveshch. Lososevomu Khoz. Dal’nego Vostoka (Pap. Workshop Salmon Ind. Far East), Moscow: Akad. Nauk SSSR, 1954, pp. 22–37.Google Scholar
  5. 5.
    Weir, B.S., Genetic Data Analysis: Method for Discrete Population Genetic Data, Sunderland: Sinauer Associates, 1990.Google Scholar
  6. 6.
    Volovik, S.P. and Landyshevskaya, A.E., Some issues of biology of the autumn salmon in Sakhalin, Izv. Tikhookean. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 1968, vol. 65, pp. 108–118.Google Scholar
  7. 7.
    Grigo, L.D., On morphological differences of the summer and autumn chum salmon Oncorhynchus keta (Walbaum), Dokl. Akad. Nauk SSSR, 1953, vol. 92, no. 6, pp. 1225–1228.Google Scholar
  8. 8.
    Gritsenko, O.F., Prokhodnye ryby ostrova Sakhalin. Sistematika, ekologiya, promysel (Diadromous Fish of Sakhalin Island. Systematics, Ecology, Fishery), Moscow: VNIRO, 2002.Google Scholar
  9. 9.
    Dvinin, P.A., Lososi Sakhalina i Kuril (Salmon of Sakhalin and the Kuril Islands), Moscow: Glav. Gosinspektsiya Okhr. Rybn. Zapasov Regul. Rybolov. Sov. Minist. SSSR, 1959.Google Scholar
  10. 10.
    Zhivotovsky, L.A., Populyatsionnaya biometriya (Population Biometrics), Moscow: Nauka, 1991.Google Scholar
  11. 11.
    Zhivotovsky, L.A., On the methodology of studying population structure using genetic markers (with reference to pink salmon Oncorhynchus gorbuscha), J. Ichthyol., 2013, vol. 53, no. 5, pp. 359–364.CrossRefGoogle Scholar
  12. 12.
    Zhivotovsky, L.A., Population structure of species: Eco-geographic units and genetic differentiation between populations, Russ. J. Mar. Biol., 2016, vol. 42, no. 5, pp. 373–382.CrossRefGoogle Scholar
  13. 13.
    Ivankova, E.V., Population-genetic analysis of seasonal races and local stocks of the chum salmon Oncorhynchus keta in some areas of the Far East, Izv. Tikhookean. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 1997, vol. 122, pp. 229–237.Google Scholar
  14. 14.
    Ivankova, E.V. and Efremov, V.V., Geographic variation and temporal population differentiation of chum salmon Oncorhynchus keta from some regions of the Russian Far East, Russ. J. Genet., 2009, vol. 45, no. 6, pp. 715–725.CrossRefGoogle Scholar
  15. 15.
    Kaev, A.M. and Ignatyev, Yu.I., The status of chum salmon stocks in the main breeding grounds in Sakhalin Oblast in 2009, Byull. N 4 realizatsii “Kontseptsii dal’nevostochnoi basseinovoi programmy izucheniya tikhookeanskikh lososei” (Bull. no. 4 Implementation “Concept of the Far Eastern Basin Program for the Study of Pacific Salmon”), Vladivostok: TINROTsentr, 2009, pp. 34–38.Google Scholar
  16. 16.
    Kulikova, N.I., Local chum salmon stocks in the Soviet Far East, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Khabarovsk: Amur. Otd., Tikhookean. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 1970.Google Scholar
  17. 17.
    Lapshina, A.E., On technique for counting of fish pyloric appendages, Izv. Tikhookean. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 2014, vol. 177, pp. 295–297.Google Scholar
  18. 18.
    Lapshina, A.E., Samarsky, V.G., and Zhivotovsky, L.A., Summer chum salmon artificial reproduction under low water temperature conditions during yolk sac fry development: prospects for replacement of pink by summer chum salmon at coldwater salmon hatcheries, Vopr. Rybolov., 2014, vol. 15, no. 2, pp. 238–249.Google Scholar
  19. 19.
    Lapshina, A.E., Samarsky, V.G., and Zhivotovsky, L.A., Summer chum salmon of Sakhalin: origin, biological features, prospects of use, Uch. Zap. Sakhalin. Gos. Univ., 2015, no. 1 (11–12), pp. 77–81.Google Scholar
  20. 20.
    Lindberg, G.U., Krupnye kolebaniya urovnya okeana v chetvertichnyi period (Large Fluctuations in the Sea Level in the Quaternary Period), Leningrad: Nauka, 1972.Google Scholar
  21. 21.
    Pasechnik, O.I. and Shmigirilov, A.P., Assessment of Amur chum salmon population Oncorhynchus keta (Walbaum, 1792) based on the results of tagging, Presnovodnye ekosistemy basseina reki Amur (Freshwater Ecosystems of the Amur River Basin), Vladivostok: Dal’nauka, 2008, pp. 294–303.Google Scholar
  22. 22.
    Polyakova, N.E., Semina, A.V., and Brykov, V.A., The variability in chum salmon Oncorhynchus keta (Walbaum) mitochondrial DNA and its connection with the paleogeological events in the northwest Pacific, Russ. J. Genet., 2006, vol. 42, no. 10, pp. 1164–1171.CrossRefGoogle Scholar
  23. 23.
    Pravdin, I.F., Rukovodstvo po izucheniyu ryb (Guide to the Study of Fish), Moscow: Pishchevaya Promyshlennost’, 1966.Google Scholar
  24. 24.
    Roslyi, Yu.S., Dinamika i vosproizvodstvo tikhookeanskikh lososei v basseine Amura (Dynamics and Reproduction of Pacific Salmon in the Amur River Basin), Khabarovsk: Khabar. Knizhn. Izd., 2002.Google Scholar
  25. 25.
    Salmenkova, E.A., Omel’chenko, V.T., and Altukhov, Yu.P., Geno-geographic studies of the chum salmon Oncorhynchus keta (Walbaum) populations in the Asian part of the species range, Genetika, 1992, vol. 28, no. 1, pp. 76–91.Google Scholar
  26. 26.
    Salmenkova, E.A., Omel’.chenko, V.T., Roslyi, Yu.S., et al., Genetic differentiation of chum salmon from the Amur basin, Genetika, 1994, vol. 30, no. 4, pp. 518–528.Google Scholar
  27. 27.
    Smirnov, A.I., Biologiya, razmnozheniye i razvitiye tikhookeanskikh lososei (Biology, Reproduction, and Development of Pacific Salmon), Moscow: Mosk. Gos. Univ., 1975.Google Scholar
  28. 28.
    Falconer, D.S., Introduction to Quantitative Genetics, New York: The Ronald Press Company, 1960.Google Scholar
  29. 29.
    Bergot, P., Blanc, J.M., and Escaffre, A.M., Relationship between number of pyloric caeca and growth in rainbow trout (Salmo gairdneri Richardson), Aquaculture, 1981, vol. 22, pp. 81–96.CrossRefGoogle Scholar
  30. 30.
    Bergot, P., Blanc, J.M., Escaffre, A.M., and Poisson, H., Effect of selecting sires according to their number of pyloric caeca upon the growth of offspring in rainbow trout (Salmo gairdneri Richardson), Aquaculture, 1981, vol. 25, pp. 207–215.CrossRefGoogle Scholar
  31. 31.
    Buddington, R.K. and Diamond, J.M., Aristotle revisited: the function of pyloric caeca in fish, Proc. Natl. Acad. Sci. USA, 1986, vol. 83, no. 20, pp. 8012–8014.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Chevassus, B., Blanc, J.M., and Bergot, P., Déterminisme génétique du nombre de caeca pyloriques chez la Truite fario (Salmo trutta, Linné) et la Truite arc-enciel (Salmo gairdneri, Richardson), II: Effet du génotype du milieu d’élevage et de l’alimentation sur la réalisation du caractére chez la Truite arc-en-ciel, Ann. Génét. Sél. Anim., 1979, vol. 11, pp. 79–92.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Falk, K., Bjerkås, I., and Koppang, E.O., Intestinal morphology of the wild Atlantic salmon (Salmo salar), J. Morphol., 2013, vol. 274, no. 8, pp. 859–876.CrossRefPubMedGoogle Scholar
  34. 34.
    Jonsson, B. and Jonsson, N., Early environment influences later performance in fishes, J. Fish Biol., 2014, vol. 85, no. 2, pp. 151–188.CrossRefPubMedGoogle Scholar
  35. 35.
    Lewis, P.O. and Zaykin, D., Genetic data analysis: computer program for the analysis of allelic data, 2001. http://phylogeny.uconn.edu/software/. Cited January 17, 2014.Google Scholar
  36. 36.
    McGregor, A.J., Lane, S., Thomason, M.A., et al., Migration timing, a life history trait important in the genetic structure of pink salmon, North Pac. Anadromous Fish. Comm. Bull., 1998, vol. 1, pp. 262–273.Google Scholar
  37. 37.
    Palamarchuk, A.Y., Holthuizen, P.E., Müller, W.E., et al., Organization and expression of the chum salmon insulin-like growth factor II gene, FEBS Lett., 1997, vol. 416, no. 3, pp. 344–348.CrossRefPubMedGoogle Scholar
  38. 38.
    Rungruangsak-Torrissen, K., Pringle, G.M., Moss, R., and Houlihan, D.F., Effects of varying rearing temperatures on expression of different trypsin isozymes, feed conversion efficiency and growth in Atlantic salmon (Salmo salar L.), Fish Physiol. Biochem., 1998, vol. 19, no. 3, pp. 247–255.Google Scholar
  39. 39.
    Shamblott, M.J., Cheng, C.M., Bolt, D., and Chen, T.T., Appearance of insulin-like growth factor mRNA in the liver and pyloric ceca of a teleost in response to exogenous growth hormone, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, no. 15, pp. 6943–6946.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Toyota, E., Iyaguchi, D., Sekizaki, H., et al., Kinetic properties of three isoforms of trypsin isolated from the pyloric caeca of chum salmon (Oncorhynchus keta), Biol. Pharm. Bull., 2007, vol. 30, no. 9, pp. 1648–1652.CrossRefPubMedGoogle Scholar
  41. 41.
    Zimmerman, A.M., Wheeler, P.A., Ristow, S.S., and Thorgaard, G.H., Composite interval mapping reveals three QTL associated with pyloric caeca number in rainbow trout, Oncorhynchus mykiss, Aquaculture, 2005, vol. 247, pp. 85–95.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • L. A. Zhivotovsky
    • 1
    • 2
  • A. E. Lapshina
    • 3
  • P. B. Mikheev
    • 4
  • E. V. Podorozhnyuk
    • 4
  • O. I. Pasechnik
    • 4
  • A. V. Mamaeva
    • 5
  • T. A. Rakitskaya
    • 1
    • 2
  • G. A. Rubtsova
    • 1
    • 2
  • K. I. Afanasiev
    • 1
    • 2
  • M. V. Shitova
    • 1
    • 2
  1. 1.Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia
  2. 2.All-Russian Research Institute of Fisheries and OceanographyMoscowRussia
  3. 3.Sakhalin Basin Agency for Fishery and Conservation of Aquatic Biological ResourcesYuzhno-SakhalinskRussia
  4. 4.Khabarovsk BranchPacific Research Fisheries CenterKhabarovskRussia
  5. 5.Pobedinsky Hatchery, Sakhalin Basin Agency for Fishery and Conservation of Aquatic Biological ResourcesSakhalin OblastRussia

Personalised recommendations