Russian Journal of Marine Biology

, Volume 42, Issue 4, pp 315–323 | Cite as

Nonlinear analysis of the morphology of hemocytes from the sea stars Aphelasterias japonica (Bell, 1881), Patiria pectinifera (Muller et Troschel, 1842), and the bivalve Callista brevisiphonata (Carpenter, 1864)

  • Yu. A. KaretinEmail author
Cell Biology


A comparative analysis of the morphology of in vitro flattened coelomocytes of two starfish species, Aphelasterias japonica and Patiria pectinifera (Echinodermata: Asteroidea), and hemocytes of the bivalve Callista brevisiphonata (Mollusca: Bivalvia) was performed using a number of nonlinear parameters including several types of fractal dimensions and lacunarities. The visually “chaotic” shapes of in vitro flattened hemocytes and coelomocytes of the studied marine invertebrate species significantly differ in a number of nonlinear parameters. This fact allows numerical description of the morphology of hemolymph cells of the studied animals and gives grounds to assume a species specificity of the biological differences that influence the morphology of in vitro flattened cells.


Aphelasterias japonica Callista brevisiphonata Patiria pectinifera hemocyte coelomocyte nonlinear analysis fractal dimensions in vitro 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anisimova, A.A., Flow cytometric and light microscopic identification of hemocyte subpopulations in Modiolus kurilensis (Bernard, 1983) (Bivalvia: Mytilidae), Russ. J. Mar. Biol., 2012, vol. 38, no. 5, pp. 406–415.CrossRefGoogle Scholar
  2. 2.
    Anisimova, A.A., Morphofunctional parameters of hemocytes in the assessment of the physiological status of bivalves, Russ. J. Mar. Biol., 2013, vol. 39, no. 6, pp. 381–391.CrossRefGoogle Scholar
  3. 3.
    Demenok, L.G., Karetin, Yu.A., and Isaeva, V.V., In vitro aggregation of hemocytes of the scallop Mizuhopecten yessoensis, Russ. J. Mar. Biol., 1997, vol. 23, no. 5, pp. 285–287.Google Scholar
  4. 4.
    Dzyuba, S.M. and Romanova, L.G., Morphology of amebocytes of the hemal system in Yesso scallop, Tsitologiya, 1992, vol. 10, no. 34, pp. 54–60.Google Scholar
  5. 5.
    Isaeva, V.V., Kletki v morfogeneze (Cells during Morphogenesis), Moscow: Nauka, 1994.Google Scholar
  6. 6.
    Isaeva, V.V., Using molluscan hemocytes and echinoderm coelomocytes for biotesting, Russ. J. Mar. Biol., 1995, vol. 21, no. 6, pp. 332–339.Google Scholar
  7. 7.
    Kolyuchkina, G.A. and Ismailov, A.D., Morpho-functional characteristics of bivalve mollusks under the experimental environmental pollution by heavy metals, Oceanology (Engl. Transl.), 2011, vol. 51, no. 5, pp. 804–813.CrossRefGoogle Scholar
  8. 8.
    Beckman, N., Morse, M.P., and Moore, C.M., Comparative study of phagocytosis in normal and diseased hemocytes of the bivalvia mollusks Mya areneria, J. Invertebr. Pathol., 1992, vol. 59, no. 2, pp. 124–132.CrossRefGoogle Scholar
  9. 9.
    Bouilly, K., Gagnaire, B., Bonnard, M., et al., Effects of cadmium on aneuploidy and hemocyte parameters in the Pacific oyster Crassostrea gigas, Aquat. Toxicol., 2006, vol. 78, no. 2, pp. 149–156.CrossRefPubMedGoogle Scholar
  10. 10.
    Chen, J.H. and Bayne, C.J., Hemocyte adhesion in the California mussel (Mytilus californianus): regulation by adenosine, Biochim. Biophys. Acta, Mol. Cell Res., 1995, vol. 1268, no. 2, pp. 178–184.CrossRefPubMedGoogle Scholar
  11. 11.
    Chernyavskikh, S.D., Fedorova, M.Z., Thanh, V.V., and Quyet, D.H., Reorganization of actin cytoskeleton of nuclear erythrocytes and leukocytes in fish, frogs, and birds during migration, Cell Tissue Biol., 2012, vol. 6, no. 4, pp. 348–352.CrossRefGoogle Scholar
  12. 12.
    Dyrynda, E.A., Pipe, R.K., and Ratcliffe, N.A., Subpopulations of haemocytes in the adult and developing marine mussel, Mytilus edulis, identified by use of monoclonal antibodies, Cell Tissue Res., 1997, vol. 289, no. 3, pp. 527–536.CrossRefPubMedGoogle Scholar
  13. 13.
    Fisher, W.S., Structure and functions of oyster hemocytes, in Immunity in Invertebrates, Berlin: Springer-Verlag, 1986, pp. 25–35.CrossRefGoogle Scholar
  14. 14.
    Hine, P.M., The inter-relationships of bivalve haemocytes, Fish Shellfish Immunol., 1999, no. 9, pp. 367–385.CrossRefGoogle Scholar
  15. 15.
    Kozlowski, C. and Weimer, R.M., An automated method to quantify microglia morphology and application to monitor activation state longitudinally in vivo, PloS One, 2012, vol. 7, no. 2, p. e31814.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Perez, D.G. and Fontanetti, C.S., Hemocitical responses to environmental stress in invertebrates: a review, Environ. Monit. Assess., 2011, vol. 177, nos. 1–4, pp. 437–447.CrossRefPubMedGoogle Scholar
  17. 17.
    Pushchin, I. and Karetin, Y., Retinal ganglion cells in the Pacific redfin, Tribolodon brandtii dybowski, 1872: morphology and diversity, J. Comp. Neurol., 2014, vol. 522, no. 6, pp. 1355–1372. doi 10.1002/cne.23489PubMedGoogle Scholar
  18. 18.
    Ratner, S. and Vinson, S.B., Phagocytosis and encapsulation: cellular immune responses in Arthropoda, Am. Zool., 1983, vol. 23, no. 1, pp. 185–194. doi 10.1093/icb/23.1.185CrossRefGoogle Scholar
  19. 19.
    Rioult, D., Lebel, J.-M., and Le Foll, F., Cell tracking and velocimetric parameters analysis as an approach to assess activity of mussel (Mytilus edulis) hemocytes in vitro, Cytotechnology, 2013, vol. 65, no. 5, pp. 749–758.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Werner, G., Fractals in the nervous system: conceptual implications for theoretical neuroscience, Front. Physiol., 2010, vol. 1, p. 15. doi 10.3389/fphys.2010.00015PubMedPubMedCentralGoogle Scholar
  21. 21.
    Xiong, Y., Kabacoff, C., Franca-Koh, J., et al., Automated characterization of cell shape changes during amoeboid motility by skeletonization, BMC Syst. Biol., 2010, vol. 4, p. 33. doi 10.1186/1752-0509-4-33CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.School of Natural SciencesFar Eastern Federal UniversityVladivostokRussia
  2. 2.Zhirmunsky Institute of Marine Biology, Far East BranchRussian Academy of SciencesVladivostokRussia

Personalised recommendations