Nonlinear analysis of the morphology of hemocytes from the sea stars Aphelasterias japonica (Bell, 1881), Patiria pectinifera (Muller et Troschel, 1842), and the bivalve Callista brevisiphonata (Carpenter, 1864)
- 32 Downloads
- 1 Citations
Abstract
A comparative analysis of the morphology of in vitro flattened coelomocytes of two starfish species, Aphelasterias japonica and Patiria pectinifera (Echinodermata: Asteroidea), and hemocytes of the bivalve Callista brevisiphonata (Mollusca: Bivalvia) was performed using a number of nonlinear parameters including several types of fractal dimensions and lacunarities. The visually “chaotic” shapes of in vitro flattened hemocytes and coelomocytes of the studied marine invertebrate species significantly differ in a number of nonlinear parameters. This fact allows numerical description of the morphology of hemolymph cells of the studied animals and gives grounds to assume a species specificity of the biological differences that influence the morphology of in vitro flattened cells.
Keywords
Aphelasterias japonica Callista brevisiphonata Patiria pectinifera hemocyte coelomocyte nonlinear analysis fractal dimensions in vitroPreview
Unable to display preview. Download preview PDF.
References
- 1.Anisimova, A.A., Flow cytometric and light microscopic identification of hemocyte subpopulations in Modiolus kurilensis (Bernard, 1983) (Bivalvia: Mytilidae), Russ. J. Mar. Biol., 2012, vol. 38, no. 5, pp. 406–415.CrossRefGoogle Scholar
- 2.Anisimova, A.A., Morphofunctional parameters of hemocytes in the assessment of the physiological status of bivalves, Russ. J. Mar. Biol., 2013, vol. 39, no. 6, pp. 381–391.CrossRefGoogle Scholar
- 3.Demenok, L.G., Karetin, Yu.A., and Isaeva, V.V., In vitro aggregation of hemocytes of the scallop Mizuhopecten yessoensis, Russ. J. Mar. Biol., 1997, vol. 23, no. 5, pp. 285–287.Google Scholar
- 4.Dzyuba, S.M. and Romanova, L.G., Morphology of amebocytes of the hemal system in Yesso scallop, Tsitologiya, 1992, vol. 10, no. 34, pp. 54–60.Google Scholar
- 5.Isaeva, V.V., Kletki v morfogeneze (Cells during Morphogenesis), Moscow: Nauka, 1994.Google Scholar
- 6.Isaeva, V.V., Using molluscan hemocytes and echinoderm coelomocytes for biotesting, Russ. J. Mar. Biol., 1995, vol. 21, no. 6, pp. 332–339.Google Scholar
- 7.Kolyuchkina, G.A. and Ismailov, A.D., Morpho-functional characteristics of bivalve mollusks under the experimental environmental pollution by heavy metals, Oceanology (Engl. Transl.), 2011, vol. 51, no. 5, pp. 804–813.CrossRefGoogle Scholar
- 8.Beckman, N., Morse, M.P., and Moore, C.M., Comparative study of phagocytosis in normal and diseased hemocytes of the bivalvia mollusks Mya areneria, J. Invertebr. Pathol., 1992, vol. 59, no. 2, pp. 124–132.CrossRefGoogle Scholar
- 9.Bouilly, K., Gagnaire, B., Bonnard, M., et al., Effects of cadmium on aneuploidy and hemocyte parameters in the Pacific oyster Crassostrea gigas, Aquat. Toxicol., 2006, vol. 78, no. 2, pp. 149–156.CrossRefPubMedGoogle Scholar
- 10.Chen, J.H. and Bayne, C.J., Hemocyte adhesion in the California mussel (Mytilus californianus): regulation by adenosine, Biochim. Biophys. Acta, Mol. Cell Res., 1995, vol. 1268, no. 2, pp. 178–184.CrossRefPubMedGoogle Scholar
- 11.Chernyavskikh, S.D., Fedorova, M.Z., Thanh, V.V., and Quyet, D.H., Reorganization of actin cytoskeleton of nuclear erythrocytes and leukocytes in fish, frogs, and birds during migration, Cell Tissue Biol., 2012, vol. 6, no. 4, pp. 348–352.CrossRefGoogle Scholar
- 12.Dyrynda, E.A., Pipe, R.K., and Ratcliffe, N.A., Subpopulations of haemocytes in the adult and developing marine mussel, Mytilus edulis, identified by use of monoclonal antibodies, Cell Tissue Res., 1997, vol. 289, no. 3, pp. 527–536.CrossRefPubMedGoogle Scholar
- 13.Fisher, W.S., Structure and functions of oyster hemocytes, in Immunity in Invertebrates, Berlin: Springer-Verlag, 1986, pp. 25–35.CrossRefGoogle Scholar
- 14.Hine, P.M., The inter-relationships of bivalve haemocytes, Fish Shellfish Immunol., 1999, no. 9, pp. 367–385.CrossRefGoogle Scholar
- 15.Kozlowski, C. and Weimer, R.M., An automated method to quantify microglia morphology and application to monitor activation state longitudinally in vivo, PloS One, 2012, vol. 7, no. 2, p. e31814.CrossRefPubMedPubMedCentralGoogle Scholar
- 16.Perez, D.G. and Fontanetti, C.S., Hemocitical responses to environmental stress in invertebrates: a review, Environ. Monit. Assess., 2011, vol. 177, nos. 1–4, pp. 437–447.CrossRefPubMedGoogle Scholar
- 17.Pushchin, I. and Karetin, Y., Retinal ganglion cells in the Pacific redfin, Tribolodon brandtii dybowski, 1872: morphology and diversity, J. Comp. Neurol., 2014, vol. 522, no. 6, pp. 1355–1372. doi 10.1002/cne.23489PubMedGoogle Scholar
- 18.Ratner, S. and Vinson, S.B., Phagocytosis and encapsulation: cellular immune responses in Arthropoda, Am. Zool., 1983, vol. 23, no. 1, pp. 185–194. doi 10.1093/icb/23.1.185CrossRefGoogle Scholar
- 19.Rioult, D., Lebel, J.-M., and Le Foll, F., Cell tracking and velocimetric parameters analysis as an approach to assess activity of mussel (Mytilus edulis) hemocytes in vitro, Cytotechnology, 2013, vol. 65, no. 5, pp. 749–758.CrossRefPubMedPubMedCentralGoogle Scholar
- 20.Werner, G., Fractals in the nervous system: conceptual implications for theoretical neuroscience, Front. Physiol., 2010, vol. 1, p. 15. doi 10.3389/fphys.2010.00015PubMedPubMedCentralGoogle Scholar
- 21.Xiong, Y., Kabacoff, C., Franca-Koh, J., et al., Automated characterization of cell shape changes during amoeboid motility by skeletonization, BMC Syst. Biol., 2010, vol. 4, p. 33. doi 10.1186/1752-0509-4-33CrossRefPubMedPubMedCentralGoogle Scholar