Advertisement

Russian Journal of Marine Biology

, Volume 41, Issue 6, pp 485–489 | Cite as

Metal binding activity of pectin isolated from seagrass Zostera marina and its derivatives

  • E. V. Khozhaenko
  • R. Y. Khotimchenko
  • V. V. Kovalev
  • M. Y. Khotimchenko
  • E. A. Podkorytova
Marine Pharmacology

Abstract

Low esterified pectin was isolated from the seagrass Zostera marina. Dynamics of the isolation process for the pectin from this seagrass was investigated. Two pectin derivatives: galacturonide (A) with molecular weight 30.55 kDa and galacturonide (B) with molecular weight 3.94 kDa were obtained using acidic hydrolysis of the native pectin from Zostera marina. Molecular weight parameters (Mw, Mn, Mw/Mn) of this pectin and its derivatives as well as of commercial apple pectin were determined using gel-filtration chromatography method. Comparative assessment of Cd2+, Pb2+, Y3+-binding activity of the native Zostera pectin, galacturonides A and B, and commercial apple pectin was performed. The results showed that galacturonide A with molecular weight 30.55 kDa possesses highest metal-binding capacity and may be considered as a candidate for development of medicines with metal-binding activity.

Keywords

pectin Zostera marina molecular mass distribution metal-binding activity cadmium lead yttrium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achamlale, S., Rezzonico, B., and GrignonDubois, M., Rosmarinic acid from beach waste: isolation and HPLC quantification in Zostera detritus from Arcachon lagoon, Food Chem., 2009, vol. 113, pp. 878–883.CrossRefGoogle Scholar
  2. 2.
    Blumenkrantz, N. and Asboe-Hansen, G., New method for quantitative determination of uronic acids, Anal. Biochem., 1973, vol. 54, pp. 484–489.PubMedCrossRefGoogle Scholar
  3. 3.
    FCC. Food Chemical Codex, Washington, DC: Natl. Acad. Sci., 2004.Google Scholar
  4. 4.
    Fontes, L.C.B., Ramos, K.K., Sivi, T.C., and Queiroz F.P.C., Biodegradable edible films from renewable sources-potential for their application in fried foods, Am. J. Food Technol., 2011, vol. 6, pp. 555–567.CrossRefGoogle Scholar
  5. 5.
    Guillotin, S., Van Loey, V., Boulenguer, P., Schols, H., and Voragen, A., Rapid HPLC method to screen pectins for heterogeneity in methyl-esterification and amidation, Food Hydrocolloids, 2007, vol. 21, pp. 85–91.CrossRefGoogle Scholar
  6. 6.
    Gustafsson, C. and Boström, C., Algal mats reduce eelgrass (Zostera marina L.) growth in mixed and monospecific meadows, J. Exp. Mar. Biol. Ecol., 2014, vol. 461, pp. 85–92.CrossRefGoogle Scholar
  7. 7.
    Khotimchenko, Y., Khozhaenko, E., Kovalev, V., and Khotimchenko M., Cerium Binding Activity of Pectins Isolated from the Seagrasses Zostera marina and Phyllospadix iwatensis, Mar. Drugs, 2012, vol. 10, pp. 834–848.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Khotimchenko, M., Kolenchenko, E., and Khotimchenko, Y., Cerium binding activity of different pectin compounds in aqueous solutions, Colloids Surf. B, 2010, vol. 77, pp. 104–110.CrossRefGoogle Scholar
  9. 9.
    Khotimchenko, M., Sergushchenko, I., and Khotimchenko, Y., The effects of low-esterified pectin on leadinduced thyroid injury in rats, Environ. Toxicol. Pharmacol., 2004, vol. 17, pp. 67–71.PubMedCrossRefGoogle Scholar
  10. 10.
    Kolenchenko, E., Khotimchenko, Y., and Sonina, L., Comparative in vitro assessment of antioxidant activities of low-etherified pectin from the eelgrass Zostera marina and antioxidative medicines, Russ. J. Mar. Biol., 2005, vol. 31, pp. 331–334.CrossRefGoogle Scholar
  11. 11.
    Nesterenko, V.B., Nesterenko, A.V., and Babenko, V.I., Reducing the 137Cs-load in the organism of “Chernobyl” children with apple-pectin, Swiss Med. Wkly., 2004, vol. 134, pp. 24–27.PubMedGoogle Scholar
  12. 12.
    Radulovich, R., Umanzor, S., Cabrera, R., and Mata, R., Tropical seaweeds for human food, their cultivation and its effect on biodiversity enrichment, Aquaculture, 2015, vol. 436, pp. 40–46.CrossRefGoogle Scholar
  13. 13.
    Ralet, M.C., Dronnet, V., Buchholt, H.C., and Thibault, J.F., Enzymatically and chemically deesterified lime pectins: Characterization, polyelectrolyte behavior and calcium binding properties, Carbohydr. Res., 2001, vol. 336, pp. 117–125.PubMedCrossRefGoogle Scholar
  14. 14.
    Razina, T., Zueva, E., Amosova, E., Krylova, S.G., Khotimchenko, M.Y., Lopatina, K.A., Efimova, L.A., Safonova, E.A., and Rybalkina, A.Y., Effects of pectins of various molecular mass on growth of Ehrlich adenocarcinoma and Lewis lung carcinoma, cyclophosphan efficiency in mice, Pac. Med. J., 2010, vol. 2, pp. 32–36.Google Scholar
  15. 15.
    Rybalkina, O.Y., Ermakova, N.N., Razina, T.G., Zueva, E.P., Skurikhin, E.G., Khotimchnenko, M.Y., and Khotimchenko, R.Y., Correction of toxic effect of cyclophosphamide on hemopoiesis in animals with lung Lewis carcinoma using low molecular sodium alginate, Russ. J. Mar. Biol., 2015, vol. 41, pp. 366–373.CrossRefGoogle Scholar
  16. 16.
    Tabakaeva, O.V. and Semiletova E.V., Phytochemical compositions of potentially commercial far-east brown algae, Chem. Natur. Compd., 2015, vol. 51, pp. 611–614.CrossRefGoogle Scholar
  17. 17.
    Zhou Y., Liu X., and Liu B., Unusual pattern in characteristics of the eelgrass Zostera marina L.in a shallow lagoon (Swan Lake), north China: Implications on the importance of seagrass conservation, Aquat. Bot., 2015, vol. 120, pp. 178–184.CrossRefGoogle Scholar
  18. 18.
    USP food chemicals codex. http://www.usp.org/foodingredients/food-chemicals-codex. Cited June 4, 2015.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • E. V. Khozhaenko
    • 1
    • 2
  • R. Y. Khotimchenko
    • 2
  • V. V. Kovalev
    • 2
  • M. Y. Khotimchenko
    • 1
    • 2
  • E. A. Podkorytova
    • 2
  1. 1.School of BiomedicineFar Eastern Federal UniversityVladivostokRussia
  2. 2.Zhirmunsky Institute of Marine Biology, Far Eastern BranchRussian Academy of SciencesVladivostokRussia

Personalised recommendations