Russian Journal of Marine Biology

, Volume 41, Issue 3, pp 145–156 | Cite as

Fucoidans of brown algae: Biosynthesis, localization, and physiological role in thallus

  • A. V. Skriptsova
Review Biopolymers Structure and Function


The issues of the structure and biosynthesis of fucose-containing sulfated polysaccharides are considered in this review; the data on the localization of fucoidans in tissues and their significance for algae are provided. Fucoidans participate in the building of cell walls and the support of their structure, as well as in extrusion of spores and gametes from reproductive organs. Due to the sulfated groups, these polysaccharides can bind cations (mainly K+, Na+, Ca2+, Mg2+) and participate in ion exchange with the environment, which facilitates adaptation of algae to water salinity fluctuations and to the toxic effects of heavy metals. Fucoidans play a substantial role in morphogenesis of zygotes of fucoid algae, as they participate in establishing the cell polarity and fixing the cell-division axis, thus determining the direction for the development of the rhizoidal and apical poles of young thalli.


fucose-containing sulfated polysaccharides fucoidans biosynthesis physiological role localization Phaeophyceae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bilan, M.I., Zakharova, A.N., Grachev, A.A., Shashkov, A.S., Nifantiev, N.E., and Usov, A.I., Polysaccharides of algae: 60. Fucoidan from the pacific brown alga Analipus japonicus (Harv.) winne (Ectocarpales, Scytosiphonaceae), Russ. J. Bioorg. Chem., 2007, vol. 33, no. 1, pp. 38–46.Google Scholar
  2. 2.
    Imbs, T.I., Shevchenko, N.M., Sukhoverkhov, S.V., Semenova, T.L., Skriptsova, A.V., and Zvyagintseva, T.N., Seasonal variations of the composition and structural characteristics of polysaccharides from the brown alga Costaria costata, Chem. Nat. Compd., 2009, vol. 45, no. 6, pp. 786–791.Google Scholar
  3. 3.
    Makarov, V.N., Behavior of zoospores and early stages of development of Laminaria saccharina (L.) Lamour. in the White and Barents seas, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Leningrad, 1987.Google Scholar
  4. 4.
    Men’shova, R.V., Ermakova, S.P., Um, B.H., and Zvyagintseva, T.N., The composition and structural characteristics of polysaccharides of the brown alga Eisenia bicyclis, Russ. J. Mar. Biol., 2013, vol. 39, no. 3, pp. 208–213.Google Scholar
  5. 5.
    Usov, A.I. and Bilan, M.I., Fucoidans-sulfated polysaccharides of brown algae, Russ. Chem. Rev., 2009, vol. 78, no. 8, pp. 785–799.Google Scholar
  6. 6.
    Usov, A.I., Smirnova, G.P., Bilan, M.I., and Shashkov, A.S., Polysaccharides of algae. 53. Brown alga Laminaria saccharina (L.) Lam. as a source of fucoidan, Bioorg. Khim., 1998, vol. 24, no. 6, pp. 437–445.Google Scholar
  7. 7.
    Usov, A.I., Smirnova, G.P., and Klochkova, N.G., Polysaccharides of Algae. 58. The polysaccharide composition of the Pacific brown alga Alaria fistulosa P. et R. (Alariaceae, Laminariales), Russ. Chem. Bull., 2005, vol. 54, no. 5, pp. 1282–1286.Google Scholar
  8. 8.
    Khotimchenko, Yu.S., Antitumor properties of nonstarch polysaccharides: fucoidans and chitosans, Russ. J. Mar. Biol., 2010, vol. 36, no. 5, pp. 321–330.Google Scholar
  9. 9.
    Shevchenko, N.M., Anastyuk, S.D., Gerasimenko, N.I., Dmitrenok, P.S., Isakov, V.V., and Zvyagintseva, T.N., Polysaccharide and lipid composition of the brown seaweed Laminaria gurjanovae, Russ. J. Bioorg. Chem., 2007, vol. 33, no. 1, pp. 88–98.Google Scholar
  10. 10.
    Shokur, O.A. and Khotimchenko, Yu.S., The influence of fucoidan from the brown alga Saccharina japonica on the platelet aggregation in vitro, Biol. Morya, 2013, vol. 39, no. 5, pp. 380–383.Google Scholar
  11. 11.
    Abdel-Fattah, A.F., Hussein, M.M.D., and Salem, H.M., Studies of the purification and some properties of sargassan, a sulphated heteropolysaccharide from Sargassum linifolium, Carbohydr. Res., 1974, vol. 33, pp. 9–17.Google Scholar
  12. 12.
    Ale, M.T. and Meyer, A.S., Fucoidans from brown seaweeds: an update on structures, extraction techniques and use of enzymes as tools for structural elucidation, RSC Adv., 2013, vol. 3, pp. 8131–8141.Google Scholar
  13. 13.
    Ale, M.T., Mikkelsen, J.D., and Meyer, A.S., Important determinants for fucoidan bioactivity: a critical review of structure-function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweeds, Mar. Drugs, 2011, vol. 9, no. 10, pp. 2106–2130.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Anastyuk, S.A., Shevchenko, N.M., Nazarenko, E.L., et al., Structural analysis of a highly sulfated fucan from the brown alga Laminaria cichorioides by tandem MALDI and ESI mass spectrometry, Carbohydr. Res., 2010, vol. 345, pp. 2206–2212.PubMedGoogle Scholar
  15. 15.
    Andrade, L.R., Leal, R.N., Noseda, M., et al., Brown algae overproduce cell wall polysaccharides as a protection mechanism against the heavy metal toxicity, Mar. Pollut. Bull., 2010, vol. 60, pp. 1482–1488.PubMedGoogle Scholar
  16. 16.
    Andrade, L.R., Salgado, L.T., Farina, M., et al., Ultrastructure of acidic polysaccharides from the cell walls of brown algae, J. Struct. Biol., 2004, vol. 145, pp. 216–225.PubMedGoogle Scholar
  17. 17.
    Becker, D.J. and Lowe, J.B., Fucose: biosynthesis and biological function in mammals, Glycobiology, 2003, vol. 13, pp. 41–53.Google Scholar
  18. 18.
    Belanger, K.D. and Quatrano, R.S., Membrane recycling occurs during asymmetric tip growth and cell plate formation in Fucus distichus zygotes, Protoplasma, 2000, vol. 212, pp. 24–37.Google Scholar
  19. 19.
    Berteau, O. and Mulloy, B., Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide, Glycobiology, 2003, vol. 13, no. 6, pp. 29–40.Google Scholar
  20. 20.
    Bhamrah, G. and Kaur, I., Vegetative anatomy and tetrasporogenesis in Stoechospermum marginatum (C. Agardh) Kützing (Dictyotales, Phaeophyceae), Algae, 2005, vol. 20, no. 4, pp. 315–324.Google Scholar
  21. 21.
    Bilan, M.I., Grachev, A.A., Shashkov, A.S., et al., Structure of a fucoidan from the brown seaweed Fucus serratus L., Carbohydr. Res., 2006, vol. 341, pp. 238–245.PubMedGoogle Scholar
  22. 22.
    Bilan, M.I., Grachev, A.A., Shashkov, A.S., et al., Further studies on the composition and structure of a fucoidan preparation from the brown alga Saccharina latissima, Carbohydr. Res., 2010, vol. 345, pp. 2038–2047.PubMedGoogle Scholar
  23. 23.
    Bilan, M.I., Grachev, A.A., Shashkov, A.S., et al., Preliminary investigation of a highly sulfated galactofucan fraction isolated from the brown alga Sargassum polycystum, Carbohydr. Res., 2013, vol. 377, pp. 48–57.PubMedGoogle Scholar
  24. 24.
    Bilan, M.I., Grachev, A.A., Ustuzhanina, N.E., et al., Structure of a fucoidan from the brown seaweed Fucus evanescens C. Ag., Carbohydr. Res., 2002, vol. 337, pp. 719–730.PubMedGoogle Scholar
  25. 25.
    Bilan, M.I., Grachev, A.A., Ustuzhanina, N.E., et al., A highly regular fraction of a fucoidan from the brown seaweed Fucus distichus L., Carbohydr. Res., 2004, vol. 339, pp. 511–517.PubMedGoogle Scholar
  26. 26.
    Bisgrove, S.R. and Kropf, D.L., Cell wall deposition during morphogenesis in fucoid algae, Planta, 2001, vol. 212, pp. 648–658.PubMedGoogle Scholar
  27. 27.
    Black, W.A.P., The seasonal variation in the combined L-fucose content of the common British Laminariaceae and Fucaceae, J. Sci. Food Agric., 1954, vol. 5, pp. 445–448.Google Scholar
  28. 28.
    Blondin, C., Chaubet, F., Nardella, A., et al., Relationships between chemical characteristics and anticomplementary activity of fucans, Biomaterials, 1996, vol. 17, pp. 597–603.PubMedGoogle Scholar
  29. 29.
    Bown, L., Kusaba, S., Goubet, F., et al., The ectopically parting cells 1-2 (epc1-2) mutant exhibits an exaggerated response to abscisic acid, J. Exp. Bot., 2007, vol. 58, pp. 1813–1823.PubMedGoogle Scholar
  30. 30.
    Brawley, S.H., Wetherbee, R., and Quatrano, R.S., Fine-structural studies of the gamete and embryo of Fucus vesiculosus L. (Phaeophyta). II. The cytoplasm of the egg and young zygote, J. Cell Sci., 1976, vol. 20, pp. 255–271.PubMedGoogle Scholar
  31. 31.
    Burns, A.R., Oliveira, L., and Bisalputra, T., A histological study of bud initiation in the brown alga Sphacelaria furcigera, New Phytol., 1982, vol. 92, pp. 297–307.Google Scholar
  32. 32.
    Callow, M.E., Coughlan, S.J., and Evans, L.V., The role of Golgi bodies in polysaccharide sulphation in Fucus zygotes, J. Cell Sci., 1978, vol. 32, pp. 337–356.PubMedGoogle Scholar
  33. 33.
    Callow, M.E. and Evans, L.V., Localization of sulfated polysaccharides by X-ray microanalysis in Laminaria saccharina, Planta, 1976, vol. 131, pp. 155–157.PubMedGoogle Scholar
  34. 34.
    Chaubet, F., Chevolot, L., Jozefonvicz, J., et al., Relationships between chemical characteristics and anticoagulant activity of low molecular weight fucans from marine algae, in Bioactive Carbohydrate Polymers, Netherlands: Kluwer, 2000, pp. 59–84.Google Scholar
  35. 35.
    Chevolot, L., Foucault, A., Chaubet, F., et al., Further data on the structure of brown seaweed fucans: relationships with anticoagulant activity, Carbohydr. Res., 1999, vol. 319, pp. 154–165.PubMedGoogle Scholar
  36. 36.
    Chevolot, L., Mulloy, B., Ratiscol, J., et al., A disaccharide repeat unit is the structure in fucoidan from two species of brown algae, Carbohydr. Res., 2001, vol. 330, pp. 529–535.PubMedGoogle Scholar
  37. 37.
    Chizhov, A.O., Dell, A., Morris, H.R., et al., A study of fucoidan from the brown seaweed Chorda filum, Carbohydr. Res., 1999, vol. 320, pp. 108–119.PubMedGoogle Scholar
  38. 38.
    Conchie, J. and Percival, E.G.V., Fucoidin. Part II. The hydrolysis of a methylated fucoidin prepared from Fucus vesiculosus, J. Chem. Soc., 1950, pp. 827–833.Google Scholar
  39. 39.
    Coughlan, S., Sulphate uptake in Fucus serratus, J. Exp. Bot., 1977, vol. 28, no. 106, pp. 1207–1215.Google Scholar
  40. 40.
    Coughlan, S. and Evans, L.V., Isolation and characterization of Golgi bodies from vegetative tissue of the brown alga Fucus serratus, J. Exp. Bot., 1978, vol. 29, no. 108, pp. 55–68.Google Scholar
  41. 41.
    Crayton, M.A., Wilson, E., and Quatrano, R.S., Sulfation of fucoidan in Fucus embryos. II. Separation from initiation of polar growth, Dev. Biol., 1974, vol. 39, pp. 164–167.PubMedGoogle Scholar
  42. 42.
    Cumashi, A., Ushakova, N.A., Preobrazhenskaya, M.E., et al., A comparative study of the antiinflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds, Glycobiology, 2007, vol. 17, no. 5, pp. 41–52.Google Scholar
  43. 43.
    De Lestang, G. and Quillet, M., Comportement du fucoidane sulfuryle de Pelvetia canaliculata (Dene & Thur.) vis it vis des cations de la mer: proprietes d’echange, renouvellement des radicaux sulfuriques, coenzyme d’activation des sulfates, Physiol. Vég., 1974, vol. 12, pp. 199–227.Google Scholar
  44. 44.
    Eardley, D.D., Sutton, C.W., Hempel, W.M., et al., Monoclonal antibodies specific for sulfated polysaccharides on the surface of Macrocystis pyrifera (Phaeophyceae), J. Phycol., 1990, vol. 26, pp. 54–62.Google Scholar
  45. 45.
    Evans, L.V. and Callow, M.E., Polysaccharide sulphation in Laminaria, Planta, 1974, vol. 117, pp. 93–95.PubMedGoogle Scholar
  46. 46.
    Evans, L.V. and Holligan, M.S., Correlated light and electron microscope studies on brown algae, New Phytol., 1972, vol. 71, pp. 1161–1172.Google Scholar
  47. 47.
    Evans, L.V., Simpson, M., and Callow, M.E., Sulphated polysaccharide synthesis in brown algae, Planta, 1973, vol. 110, pp. 237–252.PubMedGoogle Scholar
  48. 48.
    Fowler, J.E. and Quatrano, R.S., Plant cell morphogenesis: plasma membrane interactions with the cytoskeleton and cell wall, Annu. Rev. Cell Dev. Biol., 1997, vol. 13, pp. 697–743.PubMedGoogle Scholar
  49. 49.
    Goodner, B. and Quatrano, R.S., Fucus embryogenesis: a model to study the establishment of polarity, Plant Cell, 1993, vol. 5, pp. 1471–1481.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Green, J.R., Stafford, C.J., Jones, J.L., et al., Binding of monoclonal antibodies to vegetative tissue and fucose-containing polysaccharides of Fucus serratus L., New Phytol., 1993, vol. 124, pp. 397–408.Google Scholar
  51. 51.
    Hemmingson, J.A., Falshaw, R., Furneaux, R.H., and Thompson, K., Structure and antiviral activity of the galactofucan sulfates extracted from Undaria pinnatifida (Phaeophyta), J. Appl. Phycol., 2006, vol. 18, pp. 185–193.Google Scholar
  52. 52.
    Hogsett, W.E. and Quatrano, R.S., Sulfatation of fucoidin in Fucus embryos. III. Required for localization in the rhizoid wall, J. Cell Biol., 1978, vol. 78, pp. 866–873.PubMedCentralPubMedGoogle Scholar
  53. 53.
    Holland, R., Effect of oil spills on the early development of ecologically important rocky shore seaweedscan we use them as indicators of spill impact, Proc. Int. Oil Spill Conf., 2011, no. 1, p. 137.Google Scholar
  54. 54.
    Honya, M., Mori, H., Anzai, M., et al., Monthly changes in the content of fucans, their constituent sugars and sulphate in cultured Laminaria japonica, Hydrobiologia, 1999, vol. 398/399, pp. 411–416.Google Scholar
  55. 55.
    Hu, J.F., Geng, M.Y., Zhang, J.T., and Jiang, H.D., An in vivo study of the structure-activity relations of sulfated polysaccharide from brown algae to its antioxidant effect, J. Asian Nat. Prod. Res., 2001, vol. 3, pp. 353–358.PubMedGoogle Scholar
  56. 56.
    Hussein, M.M.D., Abdel-Aziz, A., and Salem, H.M., Some structural features of a new sulphated heteropolysaccharide from Padina pavonia, Phytochemistry, 1980, vol. 19, pp. 2133–2135.Google Scholar
  57. 57.
    Iwai, H., Masaoka, N., Ishii, T., and Satoh, S., A pectin glucuronyltransferase gene is essential for intercellular attachment in the plant meristem, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, pp. 16319–16324.PubMedCentralPubMedGoogle Scholar
  58. 58.
    Kaur, I. and Kumari, R., Understanding the mechanism of gamete release in Sargassum vulgare C. Agardh, Am. J. Plant Sci., 2012, vol. 3, pp. 1266–1271.Google Scholar
  59. 59.
    Kloareg, B., Structure et rôle écophysiologique des parois des algues littorales: contribution á la résistance aux variations de salinité, Physiol. Vég., 1981, vol. 17, pp. 731–747.Google Scholar
  60. 60.
    Kloareg, B., Demarty, M., and Mabeau, S., Polyanionic characteristic of purified sulphated homofucans from brown algae, Int. J. Biol. Macromol., 1986, vol. 8, pp. 380–386.Google Scholar
  61. 61.
    Kloareg, B. and Quatrano, R.S., Structure of the cell walls of marine algae and ecophysiological function of the matrix polysaccharides, Oceanogr. Mar. Biol., 1988, vol. 26, pp. 259–315.Google Scholar
  62. 62.
    Koo, J.G., Structural characterization of purified fucoidan from Laminaria religiosa, sporophylls of Undaria pinnatifida, Hizikia fusiformis and Sargassum fulvellum in Korea, J. Korean Fish. Soc., 1997, vol. 30, pp. 128–131.Google Scholar
  63. 63.
    Kropf, D.L., Kloareg, B., and Quatrano, R.S., Cell wall is required for fixation of the embryonic axis in Fucus zygotes, Science, 1988, vol. 239, pp. 187–194.PubMedGoogle Scholar
  64. 64.
    Le Tutour, B., Benslimane, F., Gouleau, M.P., et al., Antioxidant and pro-oxidant activities of the brown algae, Laminaria digitata, Himanthalia elongata, Fucus vesiculosus, Fucus serratus and Ascophyllum nodosum, J. Appl. Phycol., 1998, vol. 10, pp. 121–129.Google Scholar
  65. 65.
    Li, B., Lu, F., Wei, X., and Zhao, R.X., Fucoidan: structure and bioactivity, Molecules, 2008, vol. 13, pp. 1671–1695.PubMedGoogle Scholar
  66. 66.
    Li, B., Xin, J.W., Sun, J.L., and Xu, S.Y., Structural investigation of fucoidan containing a fucose-free core from the brown seaweed Hizikia fusiforme, Carbohydr. Res., 2006, vol. 341, pp. 1135–1146.PubMedGoogle Scholar
  67. 67.
    Lignell, A., Roomans, G.M., and Pedersen, M., Localization of adsorbed cadmium in Fucus vesiculosus L. by X-ray microanalysis, Z. Pflanzenphysiol., 1982, vol. 105, pp. 103–109.Google Scholar
  68. 68.
    Mabeau, S. and Kloareg, B., Isolation and analysis of cell walls of brown algae: Fucus spiralis, F. cerranoides, F. vesiculosus, F. serratus, Bifurcaria bifurcata and Laminaria digitata, J. Exp. Bot., 1987, vol. 38, pp. 1573–1580.Google Scholar
  69. 69.
    Mabeau, S., Kloareg, B., and Joseleau, J.P., Fractionation and analysis of fucans from brown algae, Phytochemistry, 1990, vol. 29, pp. 2441–2445.Google Scholar
  70. 70.
    Madson, M., Dunand, C., Li, X., et al., The MUR3 gene of Arabidopsis encodes a xyloglucan galactosyltransferase that is evolutionarily related to animal exostosins, Plant Cell, 2003, vol. 15, pp. 1662–1670.PubMedCentralPubMedGoogle Scholar
  71. 71.
    Maier, I. and Müller, D.G., Antheridium fine structure and spermatozoid release in Laminaria digitata (Phaeophyceae), Phycologia, 1982, vol. 21, no. 1, pp. 1–8.Google Scholar
  72. 72.
    Mak, W., Hamid, N., Liu, T., et al., Fucoidan from New Zealand Undaria pinnatifida: monthly variations and determination of antioxidant activities, Carbohydr. Polym., 2013, vol. 95, pp. 606–614.PubMedGoogle Scholar
  73. 73.
    Mariani, P., Tolomio, C., and Braghetta, P., An ultrastructural approach to the adaptive role of the cell wall in the intertidal alga Fucus virsoides, Protoplasma, 1985, vol. 128, pp. 208–217.Google Scholar
  74. 74.
    McCandless, E.L. and Craigie, J.S., Sulfated polysaccharides in red and brown algae, Annu. Rev. Plant Physiol., 1979, vol. 30, pp. 41–53.Google Scholar
  75. 75.
    McCully, M.E., Histological studies on the genus Fucus I. Light microscopy of the mature vegetative plant, Protoplasma, 1966, vol. 62, no. 4, pp. 287–305.Google Scholar
  76. 76.
    McCully, M.E., Histological studies on the genus Fucus. II. Histology of the reproductive tissues, Protoplasma, 1968, vol. 66, pp. 205–230.Google Scholar
  77. 77.
    Medcalf, D.G. and Larsen, B., Structural studies on ascophyllan and the fucose-containing complexes from the brown alga Ascophyllum nodosum,Carbohydr. Res., 1977, vol. 59, pp. 539–546.Google Scholar
  78. 78.
    Medcalf, D.G., Schneider, T.L., and Barnett, R.W., Structural features of a novel glucuronogalactofucan from Ascophyllum nodosum, Carbohydr. Res., 1978, vol. 66, pp. 167–171.Google Scholar
  79. 79.
    Michel, G., Tonon, T., Scornet, D., et al., The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in Eukaryotes, New Phytol., 2010, vol. 188, pp. 82–97.PubMedGoogle Scholar
  80. 80.
    Mizuno, M., Nishitani, Y., Tanoue, T., et al., Quantification and localization of fucoidan in Laminaria japonica, Biosci., Biotechnol., Biochem., 2009, vol. 73, no. 2, pp. 335–338.Google Scholar
  81. 81.
    Nagaoka, M., Shibata, H., Kimura-Takagi, I., et al., Structural study of fucoidan from Cladosiphon okamuranus Tokida, Glycoconjugate J., 1999, vol. 16, pp. 19–26.Google Scholar
  82. 82.
    Nagasato, C., Akira, I., Masashi, M., et al., Membrane fusion process and assembly of cell wall during cytokinesis in the brown alga, Silvetia babingtonii (Fucales, Phaeophyceae), Planta, 2010, vol. 232, no. 2, pp. 287–298.PubMedGoogle Scholar
  83. 83.
    Nishino, N., Aizu, Y., and Nagumo, T., The relationship between the molecular weight and the anticoagulant activity of two types of fucan sulfates from the brown seaweed Ecklonia kurome, Agric. Biol. Chem., 1991, vol. 55, no. 3, pp. 791–796.Google Scholar
  84. 84.
    Nishino, T., Takabe, T., and Nagumo, T., Isolation and partial characterization of a novel β-D-galactan sulfate from the brown seaweed Laminaria angustata var. longissima, Carbohydr. Polym., 1994, vol. 23, no. 3, pp. 165–173.Google Scholar
  85. 85.
    Novotny, A.M. and Forman, M., The composition and development of cell walls of Fucus embryos, Planta, 1975, vol. 122, pp. 67–78.PubMedGoogle Scholar
  86. 86.
    O’Neill, A.N., Degradative studies of fucoidan, J. Am. Chem. Soc., 1954, vol. 76, pp. 5074–5076.Google Scholar
  87. 87.
    Patankar, M.S., Oehninger, S., Barnett, T., et al., A revised structure for fucoidan may explain some of its biological activities, J. Biol. Chem., 1993, vol. 268, pp. 21770–21776.PubMedGoogle Scholar
  88. 88.
    Pearson, G.A. and Brawley, S.H., A model for signal transduction during gamete release in the fucoid alga Pelvetia compressa, Plant Physiol., 1998, vol. 118, pp. 305–313.PubMedCentralPubMedGoogle Scholar
  89. 89.
    Percival, E., Glucuronoxylofucan, a cell-wall component of Ascophyllum nodosum. Part I, Carbohydr. Res., 1968, vol. 7, pp. 272–283.Google Scholar
  90. 90.
    Percival, E. and McDowell, R.H., Chemistry and Enzymology of Marine Algal Polysaccharides, London: Acad. Press, 1967.Google Scholar
  91. 91.
    Percival, E. and Young, M., Carbohydrates of the brown seaweeds: Part III. Desmarestia aculeate, Carbohydr. Res., 1974, vol. 32, no. 2, pp. 195–201.Google Scholar
  92. 92.
    Ponce, N.M.A., Leonardi, P.I., Flores, M.L., et al., Polysaccharide localization in the sporophyte cell wall of Adenocystis utricularis (Ectocarpales s.l., Phaeophyceae), Phycologia, 2007, vol. 46, no. 6, pp. 675–679.Google Scholar
  93. 93.
    Quatrano, R.S., Griffing, L.R., Walchli, V.H., and Doubet, R.S., Cytological and biochemical requirements for the establishment of a polar cell, J. Cell Sci., Suppl., 1985, vol. 2, pp. 129–141.Google Scholar
  94. 94.
    Quatrano, R.S. and Shaw, S.L., Role of the cell wall in the determination of cell polarity and the plane of the cell division in Fucus embryos, Trends Plant Sci., 1997, vol. 2, no. 1, pp. 15–21.Google Scholar
  95. 95.
    Quatrano, R.S. and Stevens, P.T., Cell wall assembly in Fucus zygotes. I. Characterization of the polysaccharide component, Plant Physiol., 1976, vol. 58, pp. 224–231.PubMedCentralPubMedGoogle Scholar
  96. 96.
    Rioux, L.E., Turgeon, S.L., and Beaulieu, M., Effect of season on the composition of bioactive polysaccharides from the brown seaweed Saccharina longicruris, Phytochemistry, 2009, vol. 70, pp. 1069–1075.PubMedGoogle Scholar
  97. 97.
    Rioux, L.E., Turgeon, S.L., and Beaulieu, M., Structural characterization of laminaran and galactofucan extracted from the brown seaweed Saccharina longicruris, Phytochemistry, 2010, vol. 71, pp. 1586–1595.PubMedGoogle Scholar
  98. 98.
    Salgado, L.T., Andrade, L.R., and Filho, G.M.A., Localization of specific monosaccharides in cells of the brown alga Padina gymnospora and the relation to heavy-metal accumulation, Protoplasma, 2005, vol. 225, pp. 123–128.PubMedGoogle Scholar
  99. 99.
    Shaw, S.L. and Quatrano, R.S., The role of targeted secretion in the establishment of the cell polarity and the orientation of the division plane in Fucus zygotes, Development, 1996, vol. 122, pp. 2623–2630.PubMedGoogle Scholar
  100. 100.
    Silva, T.M.A., Alves, L.G., Queiroz, K.C.S., et al., Partial characterization and anticoagulant activity of a heterofucan from the brown seaweed Padina gymnospora, Braz. J. Med. Biol. Res., 2005, vol. 38, pp. 523–533.PubMedGoogle Scholar
  101. 101.
    Skriptsova, A.V., Shevchenko, N.M., Tarbeeva, D.V., and Zvyagintseva, T.N., Comparative study of polysaccharides from reproductive and sterile tissues of five brown seaweeds, Mar. Biotechnol., 2012, vol. 14, pp. 304–311.PubMedGoogle Scholar
  102. 102.
    Skriptsova, A.V., Shevchenko, N.M., Zvyagintseva, T.N., and Imbs, T.I., Monthly changes in the content and monosaccharide composition of fucoidan from Undaria pinnatifida (Laminariales, Phaeophyta), J. Appl. Phycol., 2010, vol. 22, pp. 79–86.Google Scholar
  103. 103.
    Sokhi, G. and Vijayaraghavan, M.R., Oogonial release in Turbinaria conoides (J.Ag.) Kützing (Fucales, Sargassaceae), Aquat. Bot., 1986, vol. 24, pp. 321–334.Google Scholar
  104. 104.
    Speransky, V.V., Brawley, S.H., and McCully, M.E., Ion fluxes and modification of the extracellular matrix during gamete release in fucoid algae, J. Phycol., 2001, vol. 37, no. 4, pp. 555–573.Google Scholar
  105. 105.
    Speransky, V.V., Speransky, S.R., and Brawley, S.H., Cryoanalytical studies of freezing damage and recovery in Fucus vesiculosus (Phaeophyceae), J. Phycol., 1999, vol. 35, pp. 1264–1275.Google Scholar
  106. 106.
    Toth, R., Sporangial structure and zoosporogenesis in Chorda tomentosa (Laminariales), J. Phycol., 1974, vol. 10, pp. 170–185.Google Scholar
  107. 107.
    Toth, R., A mechanism of propagule release from unilocular reproductive structures in brown algae, Protoplasma, 1976, vol. 89, pp. 263–278.Google Scholar
  108. 108.
    Walker, D.C. and Bisaputra, T., A re-examination of the mucilage duct system of Nereocystis luetkeana (Mertens) Postels and Ruprecht, (Phaeophyta), Protoplasma, 1977, vol. 93, pp. 109–126.Google Scholar
  109. 109.
    Xue, C.H., Fang, Y., Lin, H., et al., Chemical characters and antioxidative properties of sulfated polysaccharides from Laminaria japonica, J. Appl. Phycol., 2001, vol. 13, pp. 67–70.Google Scholar
  110. 110.
    Yoon, S.J., Pyun, Y.R., Hwang, J.K., et al., A sulfated fucan from the brown alga Laminaria cichorioides has mainly heparin cofactor II-dependent anticoagulant activity, Carbohydr. Res., 2007, vol. 342, pp. 2326–2330.PubMedGoogle Scholar
  111. 111.
    Zvyagintseva, T.N., Shevchenko, N.M., Chizhov, A.O., et al., Water-soluble polysaccharides of some far-eastern brown seaweeds. Distribution, structure, and their dependence on the developmental conditions, J. Exp. Mar. Biol. Ecol., 2003, vol. 294, no. 1, pp. 1–13.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Zhirmunsky Institute of Marine Biology, Far Eastern BranchRussian Academy of SciencesVladivostokRussia

Personalised recommendations