Russian Journal of Marine Biology

, Volume 40, Issue 1, pp 43–52 | Cite as

Ciliary and nervous structures in juvenile females of the annelid Dinophilus gyrociliatus (O. Schmidt, 1848) (Annelida: Polychaeta)

  • E. G. Fofanova
  • L. P. Nezlin
  • E. E. Voronezhskaya
Invertebrate Zoology


Ciliary and nerve structures were described in juvenile female Dinophilus gyrociliatus (O. Schmidt, 1848) after immunochemical staining with tubulin, serotonin, and FMRFamide antibodies. Anti-tubulin antibodies revealed the following external structures: two head and seven body ciliary bands, a ventral ciliary band, and head ciliary fields. Gut cilia and five pairs of protonephridia were detected inside the body. The nervous system consists of an oval headed neuropile with anterior and posterior nerves extending from it, seven longitudinal nerve cords, commissures, and circular nerves. Anti-serotonin antibodies revealed the head neuropile, neurons at the base of the ventral ciliary band, an oesophageal ring, and seven longitudinal ventral cords. Anti-FMRFamide antibodies revealed approximately ten neurons in the cerebral ganglion, five longitudinal cords, and the oesophageal and caudal-nerve rings. The presented data suggest the simplification of the nervous system structure in D. gyrociliatus, which probably reflects pedomorphosis.


annelids Dinophilus tubulin serotonin (5-HT) FMRFamide nervous system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beklemishev, V.N., Osnovy sravnitel’noi anatomii bespozvonochnykh (Basics of Comparative Anatomy of Invertebrates), Moscow: Sov. Nauka, 1964, vol. 1.Google Scholar
  2. 2.
    Benyash, I.A., Erlykova, N.N., and Evdonin, L.A., On anatomy of the nervous system in Dinophilus vorticoides, in Mnogoshchetinkovye chervi i ikh ekologicheskoye znachenie (Polychaetes and Their Ecological Significance), St. Petersburg: St.-Peterb. Gos. Univ., 1992, pp. 5–9.Google Scholar
  3. 3.
    Burukovskii, R.N., Zoologiya bespozvonochnykh (Zoology of Invertebrates), St. Petersburg: Prospekt Nauki, 2010.Google Scholar
  4. 4.
    Vagin V.L., On the annelid theory of the origin of myzostomids, their position in the system of Trochozoa and differentiation of the new phylum Myzostomida, Uch. Zap. Kazan. Univ., 2007, vol. 149, pp. 31–41.Google Scholar
  5. 5.
    Voronezhskaya, E.E. and Ivashkin, E.G., Pioneer neurons: A basis or limiting factor of lophotrochozoa nervous system diversity? Russ. J. Dev. Biol., 2010, vol. 41, no. 6, pp. 337–346.CrossRefGoogle Scholar
  6. 6.
    Ivanov, A.V., Petrushevskii, G.K., Polyanskii, Yu.I., and Strelkov, A.A. Bol’shoi praktikum po zoologii bespozvonochnykh, Ch. I (Large Practical Course on Zoology of Invertebrates. Pt. 1), Leningrad: Uchpedgiz, 1941.Google Scholar
  7. 7.
    Kotikova, E.A., New data on the nervous system of Archiannelida, Zool. J., 1973, vol. 52, no. 11, pp. 1611–1615.Google Scholar
  8. 8.
    Mamkaev, Yu.V. and Selivanova, R.V., The studies of organization of Dinophilus vorticoides, Tr. Zool. Inst., Akad. Nauk SSSR, 1979, vol. 84, pp. 73–83.Google Scholar
  9. 9.
    Nezlin, L.P., The golden age of comparative morphology: Laser scanning microscopy and neurogenesis in trochophore animals, Russ. J. Dev. Biol., 2010, vol. 41, no. 6, pp. 381–390.CrossRefGoogle Scholar
  10. 10.
    Sveshnikov, V.A., Larvae of archiannelids and polychaetes of Possjet Bay, Sea of Japan, Issled. Fauny Morei, 1967, vol. 5, no. 13, pp. 125–159.Google Scholar
  11. 11.
    Starobogatov, Ya.I., The brachycoelic (hydrocoelic) hypothesis of the coelom origin, Sb. Tr. Zool. Inst., Akad. Nauk SSSR, 1983, vol. 109, pp. 111–122.Google Scholar
  12. 12.
    Fofanova, E.G. and Voronezhskaya, E.E., Keeping in culture and revealing ciliary, nerve, and muscle structures of the archiannelid Dinophilus, XV Mezhd. konf. Lomonosov-2008 (15th Int. Conf. “Lomonosov-2008”), 2008, pp. 16–17.Google Scholar
  13. 13.
    Akesson, B., Parasite-host relationships and phylogenetic systematics. The taxonomic position of dinophilids, Mikrofauna Meeresboden, 1977, vol. 61, pp. 19–28.Google Scholar
  14. 14.
    Donworth, P.J., A reappraisal and validation of the species Dinophilus taeniatus Harmer, 1889 and of taxonomically significant features in monomorphic dinophilids (Annelida: Polychaeta), Zool. Anz., 1986, vol. 216, pp. 32–38.Google Scholar
  15. 15.
    Fofanova, E. and Voronezhskaya, E., The structure of archiannelid Dinophilus gyrociliatus ventral nerve cords, Acta Biol. Hung., 2012, pp. 88–90.Google Scholar
  16. 16.
    Franzen, A., Ultrastructure of spermatids and spermatozoa in Archiannelida, Zoon., 1977, vol. 5, pp. 97–105.Google Scholar
  17. 17.
    Harmer, S., Notes on the anatomy of Dinophilus, J. Mar. Biol. Assoc. U.K., 1889, vol. 1, no. 2, pp. 119–143.CrossRefGoogle Scholar
  18. 18.
    Hartman, O., Catalogue of the polychaetous annelids of the world, Allan Hancock Found. Publ. Occ. Pap., 1959, vol. 23, pp. 613–614.Google Scholar
  19. 19.
    Hermans, C., The systematic position of the Archiannelida, Syst. Zool., 1969, vol. 18, pp. 85–102.CrossRefGoogle Scholar
  20. 20.
    Jägersten, G., Zur Kenntnis der Morphologie: Enzystierung und Taxonomie von Dinophilus, K. Sven. Vet. Akad. Handl., 1944, vol. 21, pp. 1–90.Google Scholar
  21. 21.
    Müller, M.C.M. and Westheide, W., Comparative analysis of the nervous systems in presumptive progenetic dinophilid polychaetes (Annelida) by immunohistochemistry and cLSM, Acta Zool., 2002, vol. 83, pp. 33–48.CrossRefGoogle Scholar
  22. 22.
    Nelson, J.A., The morphology of Dinophilus conklini n. sp., Proc. Acad. Natl. Sci. Phila, 1907, vol. 59, pp. 82–143.Google Scholar
  23. 23.
    Schimkewitsch, W., Zur Kenntniss des Baues und der Entwicklung des Dinophilus vom Weissem Meere, Z. Wiss. Zool., 1895, vol. 59, pp. 46–79.Google Scholar
  24. 24.
    Shearer, G., The problem of sex determination in Dinophilus gyrociliatus: Part. 1: The sexual cycle, Quart. J. Micr. Sci., 1912, vol. 57, no. 3, pp. 329–369.Google Scholar
  25. 25.
    Struck, T., Progenetic species in polychaetes (Annelida) and problems assessing their phylogenetic affiliation, Integr. Comp. Biol., 2006, vol. 46, no. 4. pp. 558–568.PubMedCrossRefGoogle Scholar
  26. 26.
    Struck, T., Halanych, K., and Purschke, G., Dinophilidae (Annelida) is most likely not a progenetic Eunicida: evidence from 18S and 28S rDNA, Mol. Phyl. Evol., 2005, vol. 37, pp. 619–623.CrossRefGoogle Scholar
  27. 27.
    Voronezhskaya, E.E., Tsitrin, E.B., and Nezlin, L.P., Neuronal development in larval polychaete Phyllodoce maculate (Phyllodocidae), J. Comp. Neurol., 2003, vol. 455, pp. 299–309.PubMedCrossRefGoogle Scholar
  28. 28.
    Windoffer, R. and Westheide, W., The nervous system of the male Dinophilus gyrociliatus (Polychaeta, Dinophilidae): electron microscopical reconstruction of the nervous anatomy and effector cells, J. Comp. Neurol., 1988, vol. 272, pp. 475–488.PubMedCrossRefGoogle Scholar
  29. 29.
    Windoffer, R. and Westheide, W., The nervous system of the male Dinophilus gyrociliatus (Polychaeta, Dinophilidae). I. Number, types and distribution pattern of sensory cells, Acta Zool., 1988, vol. 69, no. 1, pp. 55–64.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • E. G. Fofanova
    • 1
  • L. P. Nezlin
    • 1
  • E. E. Voronezhskaya
    • 1
  1. 1.Koltzov Institute of Developmental BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations