Advertisement

Russian Journal of Marine Biology

, Volume 38, Issue 6, pp 417–422 | Cite as

The biological activities of fish peptides and methods of their isolation

  • I. N. UrakovaEmail author
  • O. N. Pozharitskaya
  • D. V. Demchenko
  • A. N. Shikov
  • V. G. Makarov
Review Biochemistry and Pharmacology

Abstract

Fish, like other aquatic organisms, are a potential source of structurally diverse bioactive compounds. Studies of the pharmacological effects of fish peptides have revealed their antihypertensive, immunomodulatory, antioxidant, antitumor, and antimicrobial activities. Analysis of the literature data confirms that fish can be used not only for nutritional purposes, but also as a source of unique peptides with a broad spectrum of biological activities. Further investigations will allow the inclusion of fish peptides as acting agents in modern medicinal drugs.

Keywords

fish peptides pharmacological activity hydrolysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adrianov, A.V., Current Problems in Marine Biodiversity Studies, Russ. J. Mar. Biol., 2004, vol. 30,Suppl. 1, pp. S1–S16.CrossRefGoogle Scholar
  2. 2.
    Maksimova, E.M., Elaboration of the Technology of Utilization of Protein Wastes Using the Method of Enzymatic Hydrolysis, Vestn. MGTU, 2006, vol. 9, no. 5, pp. 875–879.Google Scholar
  3. 3.
    Maksimyuk, N.N. and Mar’yanovskaya, Yu.V., On the Advantages of Enzymatic Method of the Synthesis of Protein Hydrolyzates, Fundament. Issled., 2009, no. 1, pp. 34–35.Google Scholar
  4. 4.
    Shamova, O.V., Orlov, D.S., Ovchinnikova, T.V., et al., Antimicrobial Peptides from Leucocytes of Russian Sturgeon (Acipenser guldenstadti), Fundament. Nauki, 2006, no. 1, pp. 10–13.Google Scholar
  5. 5.
    Achour, A., Lachgar, A., and Astgen, A., Potentialization of IL-2 Effect on Immune Cells by Oyster Extract (JCOE) in Normal and HIV-Infected Individuals, Biomed. Pharmacother., 1997, vol. 51, pp. 427–429.PubMedCrossRefGoogle Scholar
  6. 6.
    Akihisa, T., Tokuda, H., Ogata, M., et al., Cancer Chemopreventive Effects of Polyunsaturated Fatty Acids, Cancer Lett., 2004, vol. 205, no. 1, pp. 9–13.CrossRefGoogle Scholar
  7. 7.
    Anderson, J.J.B. and Garner, S.C., Introduction, Calcium and Phosphorous in Health and Disease, Calcium and Phosphorous Nutrition in Health and Disease, New York: CRC Press, 1996, pp. 1–5.Google Scholar
  8. 8.
    Bechtel, P.J. and Oliveira, A.C.M., Chemical Characterization of Liver Lipid and Protein from Cold-Water Fish Species, J. Food Sci., 2006, vol. 71, no. 6, pp. 480–485.CrossRefGoogle Scholar
  9. 9.
    Benkajul, S. and Morrissey, M.T., Protein Hydrolysates from Pacific Whiting Solid Wastes, J. Agric. Food Chem., 1997, vol. 45, pp. 3423–3430.CrossRefGoogle Scholar
  10. 10.
    Bordenave, S., Fruitier, I., Ballandier, I., et al., HPLC Preparation of Fish Waste Hydrolysate Fractions. Effect on Guinea Pig Ileum and ACE Activity, Prep. Biochem. Biotechnol., 2002, vol. 31, no. 1, pp. 65–77.CrossRefGoogle Scholar
  11. 11.
    Byun, H.G. and Kim, S.K., Purification and Characterization of Angiotensin I Converting Enzyme (ACE) Inhibitory Peptides from Alaska Pollack (Theragra chalcogramma) Skin, Process. Biochem., 2001, vol. 36, pp., 1155–1162.CrossRefGoogle Scholar
  12. 12.
    Chen, J.Y., Lin, W.J., and Lin, T.L., A Fish Antimicrobial Peptide, Tilapia Hepcidin TH2-3, Shows Potent Antitumor Activity Against Human Fibrosarcoma Cells, Peptides, 2009, vol. 30, pp. 1636–1642.PubMedCrossRefGoogle Scholar
  13. 13.
    Chia, T.J., Wu, Y.C., Chen, J.Y., and Chi, S.C., Antimicrobial Peptides (AMP) with Antiviral Activity against Fish Nodavirus, Fish Shellfish Immunol., 2010, vol. 28, pp. 434–439.PubMedCrossRefGoogle Scholar
  14. 14.
    Cho, J.H., Park, I.Y., Kim, M.S., and Kim, S.C., Matrix Metalloproteinase 2 Is Involved in the Regulation of the Antimicrobial Peptide Parasin I Production in Catfish Skin Mucosa, FEBS Lett., 2002, vol. 531, pp. 459–463.PubMedCrossRefGoogle Scholar
  15. 15.
    Cho, S.S., Lee, H.K., Yu, C.Y., et al., Isolation and Characterization of Bioactive Peptides from Hwangtae (Yellowish Dried Alaska Pollack) Protein Hydrolysate, J. Food Sci. Nutr., 2008, vol. 13, pp. 196–203.CrossRefGoogle Scholar
  16. 16.
    Cinq-Mars, C.D., Hu, C., Kitts, D.D., and Li-Chan, E.C., Investigations into Inhibitor Type and Mode, Simulated Gastrointestinal Digestion, and Cell Transport of the Angiotensin I-Converting Enzyme-Inhibitory Peptides in Pacific Hake (Merluccius productus) Fillet Hydrolysate, J. Agric. Food Chem., 2008, vol. 56, no. 2, pp. 410–419.PubMedCrossRefGoogle Scholar
  17. 17.
    Cudennec, B., Rozenn Ravallec-Plé, E., and Fouchereau-Peron, M., Peptides from Fish and Crustacean By-Products Hydrolysates Stimulate Cholecystokinin Release in STC-1 Cells, Food Chem., 2008, vol. 111, no. 4, pp. 970–975.CrossRefGoogle Scholar
  18. 18.
    Deeslie, W.D. and Cheryan, M., Continuous Enzymatic Modification of Proteins in an Ultrafiltration Reactor, J. Food Sci., 1981, vol. 46, pp. 1035–1042.CrossRefGoogle Scholar
  19. 19.
    Elias, R.J., Kellerby, S.S., and Decker, E.A., Antioxidant Activity of Proteins and Peptides, Crit. Rev. Food Sci. Nutr., 2008, vol. 48. D. 430–441.PubMedCrossRefGoogle Scholar
  20. 20.
    Erdmann, K., Cheung, B.W.Y., and Schroder, H., The Possible Roles of Food-Derived Bioactive Peptides in Reducing the Risk of Cardiovascular Disease, J. Nutr. Biochem., 2008, vol. 19, pp. 643–654.PubMedCrossRefGoogle Scholar
  21. 21.
    The State of World Fisheries and Aquaculture, Report of Fisheries and Aquaculture Department, Food and Agriculture Organization of the United Nations, Rome, Italy: FAO, 2010, (http://www.fao.org/docrep/013/i1820e/i1820e.pdf).
  22. 22.
    Fouchereau-Peron, M., Duvail, L., Michel, C., et al., Isolation of an Acid Fraction from a Fish Protein Hydrolysate with a Calcitonin-Gene-Related-Peptide-Like Biological Activity, Biotechnol. Appl. Biochem., 1999, vol. 29, pp. 87–92.PubMedGoogle Scholar
  23. 23.
    Fujii, M., Matsumura, N., Mito, K., et al., Antihypertensive Effects of Peptides in Autolysate of Bonito Bowels on Spontaneously Hypertensive Rats, Biosci. Biotechnol. Biochem., 1993, vol. 57, no. 12, pp., 2186–2188.PubMedCrossRefGoogle Scholar
  24. 24.
    Gildberg, A., Bogwald, J., Johansen, A., and Stenberg, E., Isolation of Acid Peptide Fractions from a Fish Protein Hydrolysate with Strong Stimulatory Effect on Atlantic Salmon (Salmo salar) Head Kidney Leucocytes, Comp. Biochem. Physiol., 1996, vol. 11, pp. 97–101.Google Scholar
  25. 25.
    Gue’rard, F., Enzymatic Extraction Methods for By-Product Recovery, Maximising the Value of Marine By-Products, Part 1: Marine By-Products Characterisation, Recovery and Processing, Great Britain: Editions Woodhead, 2007, pp. 107–143.Google Scholar
  26. 26.
    Gue’rard, F., Sellos, D., and Le Gal, Y., Fish and Shellfish Upgrading, Traceability, Adv. Biochem. Eng. Biotechnol., 2005, vol. 96, pp. 127–163.Google Scholar
  27. 27.
    Hirono, I., Hwang, J.Y., Ono, Y., et al., Two Different Types of Hepcidins from the Japanese Flounder Paralichthys olivaceus, FEBS J., 2005, vol. 272, pp. 5257–5264.PubMedCrossRefGoogle Scholar
  28. 28.
    Hosomi, K., Fukao, M., Fukunaga, K., et al., Effect of Fish Protein and Peptides on Lipid Adsorption on Rats, Trace Nutrients Res., 2010, vol. 27, pp. 21–27.Google Scholar
  29. 29.
    Je, J.Y., Lee, K.H., Lee, M.H., and Ahn, C.B., Antioxidant and Antihypertensive Protein Hydrolysates Produced from Tuna Liver by Enzymatic Hydrolysis, Food Res. Int., 2009, vol. 42, no. 9, pp. 1266–1272.CrossRefGoogle Scholar
  30. 30.
    Je, J.Y., Park, P.J., Kwon, J.Y., and Kim, S.K., A Novel Angiotensin I Converting Enzyme Inhibitory Peptide from Alaska Pollack (Theragra chalcogramma) Frame Protein Hydrolysate, J. Agric. Food Chem., 2005, vol. 52, pp. 7842–7845.CrossRefGoogle Scholar
  31. 31.
    Je, J.Y., Qian, Z.J., Byun, H.G., and Kim, S.K., Purification and Characterization of an Antioxidant Peptide Obtained from Tuna Backbone Protein by Enzymatic Hydrolysis, Process. Biochem., 2007, vol. 42, no. 5, pp. 840–846.CrossRefGoogle Scholar
  32. 32.
    Jeon, Y.J., Byun, H.G., and Kim, S.K., Improvement of Functional Properties of Cod Frame Protein Hydrolysates Using Ultrafiltration Membranes, Process. Biochem., 1999, vol. 35, no. 5, pp. 471–478.CrossRefGoogle Scholar
  33. 33.
    Jha, R.K. and Zi-rong, X., Biomedical Compounds from Marine Organisms, Mar. Drugs, 2004, vol. 2, pp. 123–146.CrossRefGoogle Scholar
  34. 34.
    Jun, S.Y., Park, P.J., Jung, W.K., and Ki, S.K., Purification and Characterization of an Antioxidative Peptide from Enzymatic Hydrolysate of Yellowfin Sole (Limanda aspera) Frame, Eur. Food Res. Technol., 2004, vol. 219, no. 1, pp. 20–26.Google Scholar
  35. 35.
    Jung, W.K., Mendis, E., Je, J.Y., et al., Angiotensin I-Converting Enzyme Inhibitory Peptide from Yellowfin Sole (Limanda aspera) Frame Protein and Its Antihypertensive Effect in Spontaneously Hypertensive Rats, Food Chem., 2006, vol. 94, no. 1, pp. 26–34.CrossRefGoogle Scholar
  36. 36.
    Jung, W.K., Park, P.J., Byun, H.G., et al., Preparation of Hoki (Johnius belengerii) Boneoligophosphopeptide with a High Affinity to Calcium by Carnivorous Intestine Crude Proteinase, Food Chem., 2005, vol. 91, pp. 330–340.CrossRefGoogle Scholar
  37. 37.
    Karaki, H., Kuwahara, M., Sugano, S., et al., Oral Administration of Peptides Derived from Bonito Bowels Decreases Blood Pressure in Spontaneously Hypertensive Rats by Inhibiting Angiotensin Converting Enzyme, Comp. Biochem. Physiol., Ser. C, 1993, vol. 104, no. 2, pp. 351–353.CrossRefGoogle Scholar
  38. 38.
    Kawasaki, T., Seki, E., Osajima, K., et al., Antihypertensive Effect of Valyl-Tyrosine, A Short Chain Peptide Derived from Sardine Muscle Hydrolyzate, on Mild Hypertensive Subjects, J. Human Hypertension, 2000, vol. 14, no. 8, pp. 519–523.CrossRefGoogle Scholar
  39. 39.
    Kelecom, A., Marine Organisms: An Alternative Source of Potentially Valuable Natural Products, Mem. Inst. Oswaldo Cruz., 1991, vol. 86, no. 2, pp. 99–106.PubMedCrossRefGoogle Scholar
  40. 40.
    Kim, S.K. and Mendis, E., Bioactive Compounds from Marine Processing Byproducts: A Review, Food Res. Int., 2006, vol. 39, pp. 383–393.CrossRefGoogle Scholar
  41. 41.
    Kim, S.K., Jeon, Y.J., Byun, H.G., et al., Enzymatic Recovery of Cod Frame Proteins with Crude Proteinase from Tuna Pyloric Caeca, Fish. Sci., 1997, vol. 63, pp. 421–427.Google Scholar
  42. 42.
    Kim, S.K., Jeon, Y.J., Byun, H.G., et al., Calcium Absorption Acceleration Effect on Phosphorylated and Non-Phosphorylated Peptides from Hoki (Johnius belengeri) Frame, J. Korean Fish. Soc., 1999, vol. 32, pp. 713–717.Google Scholar
  43. 43.
    Kim, S.K., Kim, Y.T., Byun, H.G., et al., Isolation and Characterization of Antioxidative Peptides from Gelatin Hydrolysate of Alaska Pollack Skin, J. Agric. Food Chem., 2001, vol. 49, pp., 1984–1989.PubMedCrossRefGoogle Scholar
  44. 44.
    Kim, S.K. and Wijesekara, I., Development and Biological Activities of Marine-Derived Bioactive Peptides: A Review, J. Funct. Foods, 2010, no. 2, pp. 1–9.Google Scholar
  45. 45.
    Kim, S.Y., Je, J.Y. and Kim, S.K., Purification and Characterization of Antioxidant Peptide from Hoki (Johnius belengerii) Frame Protein by Gastrointestinal Digestion, J. Nutr. Biochem., 2007, vol. 18, pp. 31–38.PubMedCrossRefGoogle Scholar
  46. 46.
    Klompong, V., Benjakul, S., Yachai, M., et al., Amino Acid Composition and Antioxidative Peptides from Protein Hydrolysates of Yellow Stripe Trevally (Selaroides leptolepis), J. Food Sci., 2009, vol. 74, no. 2, pp. 126–133.CrossRefGoogle Scholar
  47. 47.
    Korhonen, H. and Pihlanto-Leppala, A., Food-Derived Bioactive Peptides: Opportunities for Designing Future Foods, Curr. Pharm. Des., 2003, vol. 9, pp. 1297–1308.PubMedCrossRefGoogle Scholar
  48. 48.
    Lahl, W.J. and Braun, S.D., Enzymatic Production of Protein by Hydrolysates for Food Use, Food Technol., 1994, vol. 48, pp. 68–71.Google Scholar
  49. 49.
    Larsen, T., Thilsted, S.H., Kongsbak, K., and Hansen, M., Whole Small Fish as a Rich Calcium Source, Br. J. Nutr., 2000, vol. 83, no. 2, pp. 191–196.PubMedGoogle Scholar
  50. 50.
    Lee, H.C., Singla, A. and Lee, Y., Biomedical Applications of Collagen, Int. J. Pharm., 2001, vol. 221, pp. 1–22.PubMedCrossRefGoogle Scholar
  51. 51.
    Lin, W.J., Chien, Y.L., Pan, C.Y., et al., Epinecidin-1, An Antimicrobial Peptide from Fish (Epinephelus coioides) Which Has an Antitumor Effect Like Lytic Peptides in Human Fibrosarcoma Cells, Peptides, 2009, vol. 30, pp. 283–290.PubMedCrossRefGoogle Scholar
  52. 52.
    Matsui, T., Matshufuji, H., Seki, E., et al., Inhibition of Angiotensin I-Converting Enzyme by Bacillus licheniformis Alkaline Protease Hydrolzates Derived from Sardine Muscle, Biosci. Biotechnol. Biochem., 1993, vol. 57, no. 6, pp. 922–925.PubMedCrossRefGoogle Scholar
  53. 53.
    Matsui, T., Matsumoto, K., Mahmud, T.H.K., and Arjumand, A., Antihypertensive Peptides from Natural Resources, Adv. Phytomedicine, 2006, vol. 2, pp. 255–271.CrossRefGoogle Scholar
  54. 54.
    Miljanich, G.P., Venom Peptides as Human Pharmaceuticals, Sci. Med., 1997, pp. 6–15.Google Scholar
  55. 55.
    Moskowitz, R.W., Role of Collagen Hydrolysate in Bone and Joint Disease, Semin. Arthritis Rheum., 2000, vol. 30, pp. 87–99.PubMedCrossRefGoogle Scholar
  56. 56.
    Najafian, L. and Babji, A.S., A Review of Fish-Derived Antioxidant and Antimicrobial Peptides: Their Production, Assessment, and Applications, Peptides, 2012, vol. 33, pp. 178–185.PubMedCrossRefGoogle Scholar
  57. 57.
    Nakagawa, T. and Tagawa, T., Ultrastructural Study of Direct Bone Formation Induced by BMPs-Collagen Complex Implanted into an Ectopic Site, Oral Dis., 2000, vol. 6, pp. 172–179.PubMedCrossRefGoogle Scholar
  58. 58.
    Newman, D.J. and Cragg, G.M., Marine Natural Products and Related Compounds in Clinical and Advanced Preclinical Trials, J. Nat. Prod., 2004, vol. 67, no. 8, pp., 1216–1238.PubMedCrossRefGoogle Scholar
  59. 59.
    Noga, E.J., Ullal, A.J., Corrales, J., and Fernandes, J.M., Application of Antimicrobial Polypeptide Host Defenses to Aquaculture: Exploitation of Downregulation and Upregulation Responses, Comp. Biochem. Physiol., Ser. D, 2011, vol. 6, no. 1, pp. 44–54.Google Scholar
  60. 60.
    Pan, C.Y., Chen, J.Y., Lin, T.L., and Lin, C.H., In vitro Activities of Three Synthetic Peptides Derived from Epinecidin-1 and an Anti-Lipopolysaccharide Factor against Propionibacterium acnes, Candida albicans, and Trichomonas vaginalis, Peptides, 2009, vol. 30, pp. 1058–1068.PubMedCrossRefGoogle Scholar
  61. 61.
    Picot, L., Bordenave, S., Didelot, S., et al., Antiproliferative Activity of Fish Protein Hydrolysates on Human Breast Cancer Cell Lines, Process. Biochem., 2006, vol. 41, pp. 1217–1222.CrossRefGoogle Scholar
  62. 62.
    Pomponi, S.A., The Bioprocess-Technological Potential of the Sea, J. Biotechnol., 1999, vol. 70, pp. 5–13.CrossRefGoogle Scholar
  63. 63.
    Qian, Z.J., Je, J.Y. and Kim, S.K., Antihypertensive Effect of Angiotensin I Converting Enzyme-Inhibitory Peptide from Hydrolysates of Big Eye Tuna Dark Muscle, Thunnus obesus, J. Agric. Food Chem., 2007, vol. 55, pp. 8398–8403.PubMedCrossRefGoogle Scholar
  64. 64.
    Raghavan, S. and Kristinsson, H.G., ACE-Inhibitory Activity of Tilapia Protein Hydrolysates, Food Chem., 2009, vol. 117, pp. 582–588.CrossRefGoogle Scholar
  65. 65.
    Rajanbabu, V. and Chen, J.Y., Applications of Antimicrobial Peptides from Fish and Perspectives for the Future, Peptides, 2011, vol. 32, pp. 415–420.PubMedCrossRefGoogle Scholar
  66. 66.
    Rajanbabu, V. and Chen, J.Y., Antiviral Function of Tilapia Hepcidin 1–5 and Its Modulation of Immune-Related Gene Expressions against Infectious Pancreatic Necrosis Virus (IPNV) in Chinook Salmon Embryo (CHSE)-214 Cells, Fish Shellfish Immunol., 2011, vol. 30, no. 1, pp. 39–44.PubMedCrossRefGoogle Scholar
  67. 67.
    Rajapakse, N., Jung, W.K., Mendis, E., et al., A Novel Anticoagulant Purified from Fish Protein Hydrolysate Inhibits Factor XIIa and Platelet Aggregation, Life Sci., 2005, vol. 76, pp. 2607–2619.PubMedCrossRefGoogle Scholar
  68. 68.
    Rosoiu, N., Nita, R., Olariu, L., et al., Original Bioactive Complexes Rich in Glycosaminoglycans Obtained from Small Fish, Roum. Soc. Biol. Sci., 2008, vol. 13, no. 5, pp. 3944–3954.Google Scholar
  69. 69.
    Ryan, J.T., Ross, R.P., Bolton, D., et al., Bioactive Peptides from Muscle Sources: Meat and Fish, Nutrients, 2011, vol. 3, pp. 765–791.PubMedCrossRefGoogle Scholar
  70. 70.
    Salampessy, J., Phillips, M., Seneweera, S., and Kailasapathy, K., Release of Antimicrobial Peptides through Bromelain Hydrolysis of Leatherjacket (Meuchenia sp.) Insoluble Proteins, Food Chem., 2010, vol. 120, pp. 556–560.CrossRefGoogle Scholar
  71. 71.
    Sato, H., Kitazawa, H., Adachi, I., and Horikoshi, I., Microdialysis Assessment of Microfibrous Collagen Containing a P-Glycoprotein-Mediated Transport Inhibitor, Cyclosporine A, for Local Delivery of Etoposide, Pharm. Res., 1996, vol. 13, pp., 1565–1569.PubMedCrossRefGoogle Scholar
  72. 72.
    Shahidi, F., Han, X.Q., and Synowiecki, J., Production and Characteristics of Protein Hydrolysates from Capelin (Mallotus villosus), Food Chem., 1995, vol. 53, pp. 285–293.CrossRefGoogle Scholar
  73. 73.
    Sheih, I.C., Wu, T.K., and Fang, T.J., Antioxidant Properties of a New Antioxidative Peptide from Algae Protein Waste Hydrolysate in Different Oxidation Systems, Biores. Technol., 2009, vol. 100, pp. 3419–3425.CrossRefGoogle Scholar
  74. 74.
    Slizyte, R., Mozuraityte, R., Martinez-Alvarez, O., et al., Functional, Bioactive and Antioxidative Properties of Hydrolysates Obtained from Cod (Gadus morhua) Backbones, Process. Biochem., 2009, vol. 44, pp. 668–677.CrossRefGoogle Scholar
  75. 75.
    Su, Y., Isolation and Identification of Pelteobagrin, A Novel Antimicrobial Peptide from the Skin Mucus of Yellow Catfish (Pelteobagrus fulvidraco), Comp. Biochem. Physiol., Ser. B, 2011, vol. 158, pp. 149–154.CrossRefGoogle Scholar
  76. 76.
    Sugiyama, K., Takada, K., Egawa, M., et al., Hypotensive Effect of Fish-Protein Hydrolysate, J. Agric. Chem. Soc. Jpn., 1991, vol. 65, no. 1, pp. 35–43.Google Scholar
  77. 77.
    Sung, W.S., Lee, J., and Lee, D.G., Fungicidal Effect and the Mode of Action of Piscidin 2 Derived from Hybrid Striped Bass, Biochem. Biophys. Res. Commun., 2008, vol. 371, pp. 551–555.PubMedCrossRefGoogle Scholar
  78. 78.
    Taylor, T. and Alasalvar, C., Improved Utilization of Fish and Shellfish Waste, Seafoods, in Quality, Technology and Nutraceutical Applications, Berlin: Springer, 2002, pp. 123–136.Google Scholar
  79. 79.
    Theodore, A. and Kristinsson, H.G., Bioactive Properties of Fish Protein Hydrolysates at Varying Degrees of Hydrolysis Made from Catfish Protein Isolates, IFT Annual Meeting, New Orleans, 15–20 July 2005, Abstract 50-5, 2005.Google Scholar
  80. 80.
    Venugopal, V., Chawla, S.P., and Nair, P.M., Spray Dried Protein Powder from Threadfin Beam: Preparation, Properties and Comparison with FPC type B, J. Muscle Foods, 1996, vol. 7, pp. 55–58.CrossRefGoogle Scholar
  81. 81.
    Wang, Y.D., Kung, C.W., and Chen, J.Y., Antiviral Activity by Fish Antimicrobial Peptides of Epinecidin-1 and Hepcidin 1–5 against Nervous Necrosis Virus in Medaka, Peptides, 2010, vol. 31, pp. 1026–1033.PubMedCrossRefGoogle Scholar
  82. 82.
    Wilson, J., Hayes, M., and Carney, B., Angiotensin-I-Converting Enzyme and Prolyl Endopeptidase Inhibitory Peptides from Natural Sources with a Focus on Marine Processing By-Products, Food Chem., 2011, vol. 129, no. 2, pp. 235–244.CrossRefGoogle Scholar
  83. 83.
    Yokoyama, K., Chiba, H., and Yoshikawa, M., Peptide Inhibitors for Angiotensin I-Converting Enzyme from Thermolysin Digest of Dried Bonito, Biosci. Biotechnol. Biochem., 1992, vol. 56, no. 10, pp. 1541–1545.PubMedCrossRefGoogle Scholar
  84. 84.
    Zhao, Y., Li, B., Liu, Z., et al., Antihypertensive Effect and Purification of an ACE Inhibitory Peptide from Sea Cucumber Gelatin Hydrolysate, Process. Biochem., 2007, vol. 42, pp. 1586–1591.CrossRefGoogle Scholar
  85. 85.
    Zheng, L.H., Wang, Y.J., Sheng, J., et al., Antitumor Peptides from Marine Organisms, Mar. Drugs, 2011, vol. 9, no. 10, pp. 1840–1859.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • I. N. Urakova
    • 1
    Email author
  • O. N. Pozharitskaya
    • 1
  • D. V. Demchenko
    • 1
  • A. N. Shikov
    • 1
    • 2
  • V. G. Makarov
    • 1
    • 2
  1. 1.St. Petersburg Institute of PharmacologySt. PetersburgRussia
  2. 2.Mechnikov Northwest State Medical UniversitySt. PetersburgRussia

Personalised recommendations