Russian Journal of Marine Biology

, Volume 35, Issue 2, pp 164–170 | Cite as

Comparative study of chemical composition and antitumor activity of aqueous-ethanol extracts of brown algae Laminaria cichorioides, Costaria costata, and Fucus evanescens

  • T. I. Imbs
  • N. P. Krasovskaya
  • S. P. Ermakova
  • T. N. Makarieva
  • N. M. Shevchenko
  • T. N. Zvyagintseva
Biochemistry

Abstract

The chemical composition of water-ethanol extracts of the brown algae Laminaria cichorioides, Costaria costata, and Fucus evanescens were studied. The extracts contained mannitol, iodine, micro elements, free amino acids, glycolipids, polyunsaturated fatty acids, fucosterine, and polyphenols. The extracts were distinguished by high contents of mannitol and iodine (L. cichorioides), lipophilic matter (C. costata), and polyphenol compounds (F. evanescens). All the extracts under study inhibited the growth of DLD-1 and HT-29 human intestine tumor cells. The strongest inhibitory effect was exerted by the extract of F. evanescens at a concentration of 50 μg/ml. The extracts can be recommended for the production of fucosterol, phlorotannins, chlorophyll derivatives, mannitol, and compositions for medical and veterinary application.

Key words

brown algae antitumor activity fucosterol phlorotannins mannitol iodine compounds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bagirova, V.L. and Severtsev, V.A., Nastoiki, ekstrakty, eliksiry i ikh stadartizatsiya (Tincture, Extracts, Elixirs, and Their Stadardization), SPb: SpetsLit, 2001.Google Scholar
  2. 2.
    Barashkov, G.K., Sravnitel’naya biokhimiya vodoroslei (Comparative Biochemistry of Seaweeds), M.: Pishchevaya prom-st’, 1972.Google Scholar
  3. 3.
    Vishnevskaya, T.I. and Podkorytova, A.V., Chemical Composition of Extracts Containing Iodine and Other Biologically Active Components of Brown Algae, Materialy 2 mezhdunarod. konf. “Morskie pribrezhnye ecosistemy: vodorosli, bespozvonochnye i produkti ikh pererabotki” (Materials of the 2nd International Conference “Marine Coastal Ecosystems: Seaweeds, Invertebrates, and Their Preparations”), M.: Izd-vo VNIRO, 2005, pp. 278–283.Google Scholar
  4. 4.
    Gusarova, I.S., Sukhoveeva, M.V., and Morgutova, I.A., Annotirovannyi spisok vodoroslei-makrofitov severnogo Primorya (Annotated List of Macrophyte Algae of the Northern Primorye), Izv. TINRO, 2000, vol. 127, pp. 626–641.Google Scholar
  5. 5.
    Kizevetter, I.V., Biokhimiya syr’ya vodnogo proiskhozhdeniya (Biochemitry of Raw Materials of Aquatic Origin), M.: Pishchevaya prom-st’, 1973.Google Scholar
  6. 6.
    Kizevetter, I.V., Gryuner, V.S., and Evtushenko, V.A., Pererabotka morskikh vodoroslei i drugikh promyslovykh vodnykh rastenii (Products from Marine Algae and Other Commercial Aquatic Plants), Moscow: Pishchevaya prom-st’, 1967.Google Scholar
  7. 7.
    Klochkova, N.G. and Berezovskaya, V.A., Vodorosli kamchatskogo shelfa. Rasprostranenie, biologiya, khimicheskii sostav (Seaweeds of Kamchatka Shelf. Distribution, Biology, Chemical Composition), Vladivostok; Petropavlovsk-Kamchatskii: Dalnauka, 1997.Google Scholar
  8. 8.
    Kovtun, I.V., The Effect of Mineral Iodine and Iodine of Food Plant Origin upon the Thyroid Gland, Problemy patologii v experimente i v klinike (Problems of Pathology in Experiment and in Clinic), Moscow: Medicine, 1974, pp. 233–239.Google Scholar
  9. 9.
    Orudzhev, Ya.S. and Rostovshchikov, I.I., Application of Mediatory Amino Acids (Taurin) in the Ambulatory Gerontological Praxis, Sotsialnaya i klinicheskaya psikhiatriya (Social and Clinical Psychiatry), 1998, no. 3, pp. 78–81.Google Scholar
  10. 10.
    Patent RF no. 2034560, MKI A 61 K 35/80. Sredstvo dlya profilaktiki raka “Klamin” (“Klamin”, “Medicine for Cancer Prophylactics”), published on May 18, 1993.Google Scholar
  11. 11.
    Patent RF no. 2031654, MKI A 61 K 35/80. Sredstvo dlya profilaktiki zlokachetvennikh novoobrazovanii (“Fitolon”, Medicine for Prophylactics of Malignant Neoplasms), published on May 18, 1993.Google Scholar
  12. 12.
    Saenko, G. N., Metally i galogeny v morskikh organizmakh (Metals and Halogens in Marine Organisms), Moscow: Nauka, 1992.Google Scholar
  13. 13.
    Sukhoveeva, M.V. and Podkorytova, A.V., Promyslovye vodorosli i travy morei Dal’nego Vostoka: Biologiya, rasprostranenie, zapasy, tekhnologiya pererabotki (Commercial Species of Sea Algae and Grasses of the Far-Eastern seas: Biology, Distribution, Reserves, and Technology of Treatment), Vladivostok: TINRO-Center, 2006.Google Scholar
  14. 14.
    Tolkunov, P.A. and Sapronov, N.S., Cardioprotective Action of Taurin, Eksperimentalnaya i klinicheskaya farmakologiya (Experimental and Clinical Pharmacology), 1997, vol. 60, no. 5, pp. 72–77.Google Scholar
  15. 15.
    Usov, A.I., Smirnova, G.P., and Klochkova, N.G., Polysaccharides of Algae. 55. Polysaccharide Composition of Some Brown Algae of Kamchatka, Bioorganicheskaya Khimiya, 2001, vol. 27, no. 6, pp. 444–448.PubMedGoogle Scholar
  16. 16.
    Khavezov, I. and Tsalev, D., Atomno-absorbtsionnyi analiz (Atom-Absorption Analysis), Leningrad: Khimiya, 1983.Google Scholar
  17. 17.
    Khotimchenko, S.V., Lipidy morskikh vodoroslei-makrofitov i trav. Struktura, raspredelenie, analiz (Lipids of Sea Macrophytic Algae and Grasses. Structure, Distribution, Analysis), Vladivostok: Dalnauka, 2003.Google Scholar
  18. 18.
    Alekseyenko, T.V., Zhanayev, S.Y., Venediktova, A.A. et al., Antitumor and Antimetastatic Activity of Fucoidan, a Sulfated Polysaccharide Isolated from the Okhotsk Sea Fucus evanescens Brown Algae, Bull. Exp. Biol. Med., 2007, vol. 143, pp. 730–732.PubMedCrossRefGoogle Scholar
  19. 19.
    Cann, S.A., Netten, J.P. van, and Netten, C. van, Hypothesis: Iodine, Selenium and the Development of Breast Cancer, Cancer Causes Control, 2000, vol. 11, pp. 121–127.PubMedCrossRefGoogle Scholar
  20. 20.
    Colburn, N.H., Wendel, E.J., and Abruzzo, G., Dissociation of Mitogenesis and Late-Stage Promotion of Tumor Cell Phenotype by Phorbol Esters: Mitogen-Resistant Variants Are Sensitive to Promotion, Proc. Natl. Acad. Sci. USA, 1981, vol. 78, no. 11, pp. 6912–6916.PubMedCrossRefGoogle Scholar
  21. 21.
    Dubois, M., Gilles, K.A., Hamilton, J.K., Reiber, P.A., and Smith, F., Colorimetric Method for Determination of Sugars and Related Substances, Analyt. Chem., 1956, vol. 2, pp. 350–356.CrossRefGoogle Scholar
  22. 22.
    Funahashi, H., Imai, T., Mase, T. et al., Seaweed Prevents Breast Cancer? Jpn. J. Cancer Res., 2001, vol. 92, no. 5, pp. 483–487.PubMedGoogle Scholar
  23. 23.
    Honya, M., Kinoshita, T., Ishikawa, M., Mori, H., and Nisizawa, K., Seasonal Variation in the Lipid Content of Cultured Laminaria japonica: Fatty Acids, Sterols, β-Carotene and Tocopherol, J. Appl. Phycol., 1994, vol. 6, pp. 25–29.CrossRefGoogle Scholar
  24. 24.
    Hou, X., Yan, X., and Chai, C., Chemical Species of Iodine in Some Seaweeds. II. Iodinebound Biological Macromolecules, J. Radioanalyt. Nucl. Chem., 2000, vol. 245, no. 3, pp. 461–467.CrossRefGoogle Scholar
  25. 25.
    Imbs, A.B., Demidkova, D.A., Latypov, Y.Y., and Pham, L.Q., Application of Fatty Acids for Chemotaxonomy of Reef-Building Corals, Lipids, 2007, vol. 42, no. 11, pp. 1035–1046.PubMedCrossRefGoogle Scholar
  26. 26.
    Kotake-Nara, E., Kushiro, M., Zhang, H. et al., Carotenoids Affect Proliferation of Human Prostate Cancer Cells, J. Nutr., 2001, vol. 131, pp. 3303–3306.PubMedGoogle Scholar
  27. 27.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.I., Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem., 1951, vol. 193, pp. 265–275.PubMedGoogle Scholar
  28. 28.
    Matsuyama, K., Abe, K., and Kaneko, T., Seasonal Variation in Chemistry Components from Laminaria religiosa, Jpn. J. Phycol., 1982, vol. 30, no. 2, pp. 134–138.Google Scholar
  29. 29.
    Nakamura, T., Nagayama, K., Uchida, K., and Tanaka, R., Antioxidant Activity of Phlorotannins from the Brown Alga Eisenia bicyclis, Fish. Sci., 1996, vol. 62, no. 6, pp. 923–926.Google Scholar
  30. 30.
    Ohta, K., Mizushina, Y., Yamazaki, T. et al., Specific Interaction Between an Oligosaccharide on the Tumor Cell Surface and the Novel Antitumor Agents, Sulfoquinovosylacylglycerols, Biochem. Biophys. Res. Commun., 2001, vol. 288, no. 4, pp. 893–900.PubMedCrossRefGoogle Scholar
  31. 31.
    Podkorytova, A.V., Chemical Composition and Exploitation of Brown Algae of the Far East Coast, Europ. Meeting: Marine Phytobenthos Studies and Their Application, Taranto, 1990, p. 85.Google Scholar
  32. 32.
    Ragan, M.A. and Glombitza, K.V., Phlorotannins, Brown Algal Polyphenols, Progr. Phycol. Res., Bristol: Biopress, 1986, vol. 4, pp. 129–241.Google Scholar
  33. 33.
    Santalova, E.A., Makarieva, T.N., Gorshkova, I.A. et al., Sterols from Six Marine Sponges, Biochem. System. Ecol., 2004, vol. 32, pp. 153–167.CrossRefGoogle Scholar
  34. 34.
    Van Alstyne, K.L., A Comparison of Three Methods for Quantifying Brown Algal Polyphenolic Compounds, J. Chem. Ecol., 1995, vol. 21, pp. 45–58.CrossRefGoogle Scholar
  35. 35.
    Vaskovsky, V.E. and Isay, S.V., Quantitative Determination of Formaldehyde Liberated with Periodate Oxidation, Analyt. Biochem., 1969, vol. 30, pp. 25–31.PubMedCrossRefGoogle Scholar
  36. 36.
    Zvyagintseva, T.N., Shevchenko, N.M., Popivnich, I.B. et al., A New Procedure for the Separation of Water-Soluble Polysaccharides from Brown Seaweeds, Carbohydr. Res., 1999, no. 322, pp. 32–39.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • T. I. Imbs
    • 1
  • N. P. Krasovskaya
    • 1
  • S. P. Ermakova
    • 1
  • T. N. Makarieva
    • 1
  • N. M. Shevchenko
    • 1
  • T. N. Zvyagintseva
    • 1
  1. 1.Pacific Institute of Bioorganic Chemistry, Far East DivisionRussian Academy of SciencesVladivostokRussia

Personalised recommendations