Effects of copper and cadmium ions on the physicochemical properties of lipids of the marine bacterium Pseudomonas putida IB28 at different growth temperatures

  • O. B. Popova
  • N. M. Sanina
  • G. N. Likhatskaya
  • I. P. Bezverbnaya
Biochemistry of Microorganisms


The phospholipid and fatty acid composition and thermotropic behavior of total lipids were studied in the metal-accumulating marine strain Pseudomonas putida IB28 grown in the presence of Cu2+ and Cd2+ at 4 and 24°C. Despite the changes in acidic lipid content, unsaturated/saturated fatty acid ratio, and cyclopropane fatty acid level, the temperature range of calorimetric phase transitions of bacterial total lipids was slightly altered under these factors. The suppressive action of heavy metals on bacterial growth is attributable to the phase separation of lipids and, as a consequence, to a sharp increase in the ion permeability of the lipid bilayer. The increase in acidic phospholipid level under the influence of Cu2+ and Cd2+, especially at 24°C, is likely to be indicative of their complexation with heavy metal ions.

Key words

phospholipids fatty acids phase transitions heavy metals Pseudomonas putida 


  1. 1.
    Bezverbnaya, I.P., Dimitrieva, G.Yu., Tazaki, K., and Watanabe, H., An Experience of Evaluation of Near-Shore Seawaters in Primorye Based on Microbial Indication, Vodnye Resursy, 2003, no. 2, pp. 222–231.Google Scholar
  2. 2.
    Ivkov, V.G. and Berestovsky, G.N., Dinamicheskaya struktura lipidnogo bisloya (Dynamic Structure of Lipid Bilayer), Moscow: Nauka, 1981.Google Scholar
  3. 3.
    Nikolaev, Yu.A., Prosser, J.I., and Panikov, N.S., Extracellular Factors of Adaptation to Unfavorable Conditions in a Periodic Culture of Pseudomonas fluorescens, Mikrobiologiya, 2000, vol. 69, no. 5, pp. 629–635.Google Scholar
  4. 4.
    Abbas, C.A. and Card, G.L., The Relationships between Growth Temperature, Fatty Acid Composition and the Physical State and Fluidity of Membrane Lipids in Yersinia enterocolitica, Biochim. Biophys. Acta, 1980, vol. 602, no. 3. pp. 469–476.PubMedCrossRefGoogle Scholar
  5. 5.
    Bakholdina, S.I., Sanina, N.M., Krasikova, I.N., et al., The Impact of Abiotic Factors (Temperature and Glucose) on Physicochemical Properties of Lipids from Yersinia pseudotuberculosis, Biochimie, 2004, vol. 86, pp. 875–881.PubMedCrossRefGoogle Scholar
  6. 6.
    Barton, P.G., The Influence of Surface Charge Density of Phosphatides on the Binding of Some Cations, J. Biol. Chem., 1968, vol. 243, pp. 3884–3890.PubMedGoogle Scholar
  7. 7.
    Beney, L. and Gervais, P., Influence of the Fluidity of the Membrane on the Response of Microorganisms to Environmental Stresses, Appl. Microbiol. Biotechnol., 2001, vol. 57, no. 1–2, pp. 34–42.PubMedGoogle Scholar
  8. 8.
    Beney, L., Mille, Y., and Gervais, P., Death of Escherichia coli during Rapid and Severe Dehydration is Related to Lipid Phase Transition, Appl. Microbiol. Biotechnol., 2004, vol. 65, pp. 457–464.PubMedCrossRefGoogle Scholar
  9. 9.
    Cervantes, C. and Gutierez-Corona, F., Copper Resistance Mechanisms in Bacteria and Fungi, FEMS Microbiol. Rev., 1994, vol. 14, no. 2, pp. 23–30.CrossRefGoogle Scholar
  10. 10.
    Domènech, O., Morros, A., Cabañas, M.E., et al., Supported Planar Bilayers from Hexagonal Phases, Biochim. Biophys. Acta, 2007, vol. 1768, pp. 100–106.PubMedCrossRefGoogle Scholar
  11. 11.
    Härtig, C., Loffhagen, N., and Harms, H., Formation of Trans Fatty Acids Is Not Involved in Growth-Linked Membrane Adaptation of Pseudomonas putida, Appl. Environ. Microbiol., 2005, vol. 71, pp. 1915–1922.PubMedCrossRefGoogle Scholar
  12. 12.
    Hazel, J.R. and Williams, E.E., The Role of Alterations in Membrane Lipid Composition in Enabling Physiological Adaptation of Organisms to Their Physical Environment, Prog. Lipid Res., 1990, vol. 29, pp. 167–227.PubMedCrossRefGoogle Scholar
  13. 13.
    Jøstensen, J.-P. and Landfald, B., Influence of Growth Conditions on Fatty Acid Composition of a Polyunsaturated Fatty-Acid-producing Vibrio Species, Arch. Microbiol., 1996, vol. 165, pp. 306–310.PubMedCrossRefGoogle Scholar
  14. 14.
    Julshamn, K. and Andersen, K.J., A Study on the Digestion of Human Muscle Biopsies for Trace Metal Analysis Using an Organic Tissue Solubilizer, Anal. Biochem., 1979, vol. 98, pp. 315–318.PubMedCrossRefGoogle Scholar
  15. 15.
    Kozloff, L.M., Turner, M.A., Arellano, F., and Lute, M., Phosphatidylinositol, a Phospholipid of Ice-nucleating Bacteria, J. Bacteriol., 1991, vol. 173, pp. 2053–2060.PubMedGoogle Scholar
  16. 16.
    Kramer, J.K.G., Fouchard, R.C., and Jenkins, K.J., Differences in Chromatographic Properties of Fused Silica Capillary Columns, Coated, Crosslinked, Bonded, or Crosslinked and Bonded with Polyethylene Glycols (Carbowax 20M) Using Complex Fatty Acid Methyl Ester Mixtures, J. Chromatogr. Sci., 1985, vol. 23, no. 2. pp. 54–56.Google Scholar
  17. 17.
    Laddaga, R.A. and Silver, S., Cadmium Uptake in Escherichia coli K-12, J. Bacteriol., 1985, vol. 162, pp. 1100–1105.PubMedGoogle Scholar
  18. 18.
    Lewis, R. and McElhaney, R.N., Thermotropic Phase Behavior of Models Membranes Composed of Phosphatidylcholines Containing iso-Branched Fatty Acids. 1. Differential Scanning Calorimetric Study, Biophys. J., 2000, vol. 79, pp. 1455–1464.PubMedCrossRefGoogle Scholar
  19. 19.
    McGarrity, J.T. and Armstrong, J.B., Phase Transition Behaviour of Artificial Liposomes Composed of Phosphatidylcholines Acylated with Cyclopropane Fatty Acids, Biochim. Biophys. Acta., 1981, vol. 640, pp. 544–548.PubMedCrossRefGoogle Scholar
  20. 20.
    Medeot, D.B., Bueno, M.A., Dardanelli, M.S., and García de Lema, M., Adaptational Changes in Lipids of Bradyrhizobium SEMIA 6144 Nodulating Peanut as a Response to Growth Temperature and Salinity, Curr. Microbiol., 2007, vol. 54, pp. 31–35.PubMedCrossRefGoogle Scholar
  21. 21.
    Meyer, J.-M., Pyoverdines: Pigments, Siderophores and Potential Taxonomic Markers of Fluorescent Pseudomonas Species, Arch. Microbiol., 2000, vol. 174, no. 3, pp. 135–152.PubMedCrossRefGoogle Scholar
  22. 22.
    Morein, S., Andersson, A., Rilfors, L., and Lindblom, G., Wild-Type Escherichia coli Cells Regulate the Membrane Lipid Composition in a “Window” between Gel and non-Lamellar Structures, J. Biol. Chem., 1996, vol. 22, pp. 6801–6809.Google Scholar
  23. 23.
    Mouritsen, O.G. and Kinnunen, P.K.J., Role of Lipid Organisation and Dynamics for Membrane Fluidity, Biological Membranes, Boston: Birkhäuser, 1996, pp. 463–502.Google Scholar
  24. 24.
    Mueller, P., Rudin, D.O., Tien, H., and Wescott, W., Reconstitution of Cell Membrane Structure in vitro and Its Transformation into an Excitable System Nature, 1962, vol. 194, pp. 979–981.Google Scholar
  25. 25.
    Nagamachi, E., Shibuya, S., Hirai, Y., et al. Adaptational Changes of Fatty Acid Composition and Physical State of Membrane Lipids Following the Change of Growth Temperature in Yersinia enterocolitica, Microbiol. Immunol., 1991, vol. 35, no. 12, pp. 1085–1093.PubMedGoogle Scholar
  26. 26.
    Nies, D.H., Microbial Heavy-Metal Resistance, Appl. Microbiol. Biotechnol., 1999, vol. 51, pp. 730–750.PubMedCrossRefGoogle Scholar
  27. 27.
    Park, J.B., Kim, H.J., Ryu, P.D., and Moczydlowski, E. Effect of Phosphatidylserine on Unitary Conductance and Ba2+ Block of the BK Ca2+-Activated K+ Channel: Reexamination of the Surface Charge Hypothesis, J. Gen. Physiol., 2003, vol. 121, P. 375–397.PubMedCrossRefGoogle Scholar
  28. 28.
    Pinkart, H.C. and White, D.C., Phospholipid Biosynthesis and Solvent Tolerance in Pseudomonas putida Strains, J. Bacteriol., 1997, vol. 179, pp. 4219–4226.PubMedGoogle Scholar
  29. 29.
    Sanina, N.M. and Kostetsky, E.Y., Seasonal Changes in Thermotropic Behavior of Phosphatidylcholine and Phosphatidylethanolamine in Different Organs of the Ascidian Halocynthia aurantium, Comp. Biochem. Physiol., Ser. B., 2001, vol. 128, pp. 295–305.CrossRefGoogle Scholar
  30. 30.
    Shiba, Y., Yokoyama, Y., Aono, Y., et al., Activation of the Rcs Signal Transduction System Is Responsible for the Thermosensitive Growth Defect of an Escherichia coli Mutant Lacking Phosphatidylglycerol and Cardiolipin, J. Bacteriol., 2004, vol. 186, no. 19, pp. 6526–6535.PubMedCrossRefGoogle Scholar
  31. 31.
    Tang, Y. and Hollingsworth, R., Regulation of Lipid Synthesis in Bradyrhizobium japonicum: Low Oxygen Concentrations Trigger Phosphatidylinositol Biosynthesis, Appl. Environ. Microbiol., 1998, vol. 64, pp. 1963–1966.PubMedGoogle Scholar
  32. 32.
    Theuvenet, A.P.R., Kesseles, B.G.F., Blankensteijn, W.M., and Borst-Pawels, G.W.H.F., A Comparative Study of K+-Loss from a Cadmium-sensitive and a Cadmium-resistant Strain of Saccharomyces cerevisiae, FEMS Microbiol. Lett., 1987, vol. 43, pp. 147–153.CrossRefGoogle Scholar
  33. 33.
    Vanounou, S., Parola, A.H., and Fishov, I., Phosphatidylethanolamine and Phosphatidylglycerol Are Segregated into Different Domains in Bacterial Membrane. A Study with Pyrene-Labelled Phospholipids, Mol. Microbiol., 2003, vol. 49, pp. 1067–1079.PubMedCrossRefGoogle Scholar
  34. 34.
    Vaskovsky, V. and Khotimchenko, S., HPTLC of Polar Lipids of Algae and Other Plants, J. High Resol. Chromatogr., 1982, vol. 5, pp. 635–636.CrossRefGoogle Scholar
  35. 35.
    Vaskovsky, V.E., Kostetsky, E.Y., and Vasendin, I.M., A Universal Reagent for Phospholipid Analysis, J. Chromatogr., 1975, vol. 114, pp. 129–141.PubMedCrossRefGoogle Scholar
  36. 36.
    Vaskovsky, V.E. and Terekhova, T.A., HPTLC of Phospholipid Mixtures Containing Phosphatidylglycerol, J. High. Resol. Chromatogr., 1979, vol. 2, pp. 671–672.CrossRefGoogle Scholar
  37. 37.
    Wang, L., Li, F., and Zhou, Q., Contribution of Cell-Surface Components to Cu2+ Adsorption by Pseudomonas putida 5-x, Appl. Biochem. Biotechnol., 2006, vol. 128, no. 1, pp. 33–46.PubMedCrossRefGoogle Scholar
  38. 38.
    Williams, W.P., Cold Induced Lipid Phase Transitions, Phil. Trans. Roy. Soc. London, Ser. B: Biol. Sci., 1990, vol. 326, pp. 555–570.Google Scholar
  39. 39.
    Wolf, C., Koumanov, K., Tenchov, B., and Quinn, P.J., Cholesterol Favors Phase Separation of Sphingomyelin, Biophys. Chem., 2001, vol. 89, pp. 163–172.PubMedCrossRefGoogle Scholar
  40. 40.
    Youchimizu, M. and Kimura, T., Study of Intestinal Microflora of Salmonids, Fish Pathol., 1976, vol. 10, pp. 243–259.Google Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • O. B. Popova
    • 1
  • N. M. Sanina
    • 1
  • G. N. Likhatskaya
    • 2
  • I. P. Bezverbnaya
    • 1
  1. 1.Far Eastern State UniversityVladivostokRussia
  2. 2.Pacific Institute of Bioorganic Chemistry, Far East DivisionRussian Academy of SciencesVladivostokRussia

Personalised recommendations