Journal of Mining Science

, Volume 55, Issue 1, pp 40–44 | Cite as

Application of Textural Features in the Analysis of Breakstone Grading

  • A. I. Makarov
  • V. A. Ermakov
  • D. A. EkimovEmail author
Rock Failure


Accuracy of breakstone grain-size analysis using digital images in the initial method and its modification based on algorithm proposed by D. Rubin is compared. A modification with averaging offeatures in all directions and the method with a classification feature represented by difference of intensity distribution functions of fragment projections are described. The results obtained using these methods in a series of tests on grading of five breakstone fractions measured in a certified laboratory. It is shown that the modified method by D. Rubin with averaging in all directions provides the highest accuracy.


Grain size composition autocorrelation function texture approach 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    RF State Standard GOST 8269.0-97. Breaktsone and Gravel from Dense Rocks and Production Waste for Construction. Methods of Physico-Mechanical Tests. Moscow: Gosstroi Rossii, 1998.Google Scholar
  2. 2.
    Vil’ziter, V., Zheltov, S.Yu., Knyaz, V.A., Khodarev, A.N., and Morzhin, A.V., Obrabotka i analiz tsyfrovykh izobrazhenii s primerami na LabVIEW i IMAQ Vision (Digital Images Processing and Analysis with Examples on Lab VIEW and IMAQ Vision), Moscow: DMK Press, 2007.Google Scholar
  3. 3.
    Barnov, N.G., Lavrinenko, A.A., Lusinyan, O.G., and Chikhladze, V.V., Effect of a Crushing Technique on Lead-Zinc Ore Processing Performance, J. Min. Sci., vol. 53, no. 4, pp. 175–182.Google Scholar
  4. 4.
    Burnashev, R.E., Ryabchikov, M.Yu., and Grebennikova, V.V., Control of Centrifugal Crusher SS-0.36 Operation with Regard to the Value of Initial Material Hardness Factor using Protodyakonov’s Method, Avtomatiz. Tekhnol. Proizv., 2014, no. 6, pp. 203–208.Google Scholar
  5. 5.
    Anikin, P.M., RF patent no. 68523, Byull. Izobret., 2007, no. 33.Google Scholar
  6. 6.
    Ryabchikov, M.Yu., Burnashev, R.E., and Bogdanov, N.V., Method to Estimate Geometrical Parameters of Breakstone Grains and Using the Results to Control Crushing Process in Centrifugal Crushers, Privolzhsk. Nauch. Vestn., 2015, vol. 46, nos. 6-1, pp. 44–47.Google Scholar
  7. 7.
    Ryabchikov, M.Yu., Burnashev, R.E., and Berestov, A.P., Review of Problems to Apply Typical Segmentation Methods for Estimating Parameters of Materials Moving in Flow, Molodoi Uchenyi, 2017, vol. 7, nos. 4-1, pp. 7–10.Google Scholar
  8. 8.
    Lanaro, F. and Tolppanen, P., 3D Characterization of Coarse Aggregates, Eng. Geol., 2002, vol. 65, pp. 17–30.CrossRefGoogle Scholar
  9. 9.
    Tolppanen, P., Stephansson, O., and Stenlid, L., 3D Degradation Analysis of Railroad Ballast, Bull. Eng. Geol. Environ., 2002, vol. 61, no. 1, pp. 35–42.CrossRefGoogle Scholar
  10. 10.
    Lee, J.R., Smith, M.L., and Smith, L.N., A New Approach to the Three-Dimensional Quantification of Angularity Using Image Analysis of the Size and Form of Coarse Aggregates, Eng. Geol., 2007, vol. 91, nos. 2–4, pp. 254–264.CrossRefGoogle Scholar
  11. 11.
    Rubin, D.M., A Simple Autocorrelation Algorithm for Determining Grain Size from Digital Images of Sediment, J. Sediment. Res., 2004, vol. 74, no. 1, pp. 160–165.CrossRefGoogle Scholar
  12. 12.
    Buscombe, D., Rubin, D.M., and Warrick, J.A., A Universal Approximation of Grain Size from Images of Noncohesive Sediment, J. Geophys. Res., 2010, vol. 115, Paper F02015.Google Scholar
  13. 13.
    Bosnic, I., Sousa, H., Cascalho, J.P., Taborda, R., Ribeiro, M., and Lira, C., New Insights into Image Analysis Applied to Beach Grain-Size Variability, Actas das 2 as Jornadas de Engenharia Hidrografica Extended Abstract Book, 2012.Google Scholar
  14. 14.
    Gonzales, R. and Woods, R., Digital Image Processing, Moscow: Tekhnosfera, 2005.Google Scholar
  15. 15.
    RF State Standard GOST 33029-2014. Public Roadways. Breakstone and Gravel from Rocks. Grain Size Determination. 01.06.2016, Moscow: Standart-Inform, 2016.Google Scholar
  16. 16.
    Mandel’, I.D., Klasternyi analiz (Cluster Analysis), Moscow: Finansy statistika, 1988.Google Scholar
  17. 17.
    Ekimov, D.A., Methods for Receiving and Analyzing Images of Chaotically Arranged Similar Objects: Thesis Cand. Tech. Sci., Petrozavodsk, 2017.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. I. Makarov
    • 1
  • V. A. Ermakov
    • 1
  • D. A. Ekimov
    • 1
    • 2
    Email author
  1. 1.Institute of Physics and TechnologyPetrozavodsk State UniversityPetrozavodskRussia
  2. 2.Department of Multidisciplinary Scientific Research, Karelian Research CenterRussian Academy of SciencesPetrozavodskRussia

Personalised recommendations