Advertisement

Journal of Mining Science

, Volume 54, Issue 2, pp 339–346 | Cite as

Combustion of Fine Dispersed Dust-Gas-Air Mixtures in Underground Workings

  • S. V. CherdantsevEmail author
  • Li Hi Un
  • Yu. M. Filatov
  • D. V. Botvenko
  • P. A. Shlapakov
  • V. V. Kolykhalov
Mining Thermophysics
  • 2 Downloads

Abstract

Abstract—Stationary-state combustion of fine dispersed dust–gas–air mixtures in underground workings is considered. Under the assumption that the single source of heat emission is the carbon oxidation reaction, the second-order nonlinear differential equation is obtained for the determination of temperature and the initial conditions are formulated. The analysis of the solution shows that there exist critical values of the dust–gas–air mixture flow velocity, and the excess over these critical values may result in the mixture combustion. The cross-section of mine working is related with the temperature reached in this cross section.

Keywords

Underground workings fine dispersed dust–gas–air mixtures heat conduction equation combustion zone convection Arrhenius equation kinetic domain eigen values eigen functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Frank-Kamenetsky, D.A., Diffuziya i teploperedacha v khimicheskoi kinetike (Diffusion and Heat Transfer in Chemical Kinetics), Moscow: Nauka, 1987.Google Scholar
  2. 2.
    Kantorovich, B.V., Osnovy teorii goreniya i gazifikatsii tverdogo topliva (Foundation of the Theory of Solid Fuel Combustion and Gasification), Moscow, 2013.Google Scholar
  3. 3.
    Zel’dovich, Ya.B., Barenblatt, G.I., Librovich, V.B., and Makhviladze, G.M, Matematicheskaya teoriya goreniya i vzryva (The Mathematical Theory of Combustion and Explosions), Moscow: Nauka, 1980.Google Scholar
  4. 4.
    Smirnov, N.N., Zverev, I.N., Geterogennoe gorenie (Heterogeneous Combustion), Moscow: MGU, 1992.Google Scholar
  5. 5.
    Spolding, D.B., Gorenie i massoobmen (Russian Translation) (Combustion and Mass Transfer), Moscow: Mashinostroenie, 1985.Google Scholar
  6. 6.
    Ju, Y., Maruta, K., Microscale Combustion: Technology Development and Fundamental Research, Progress in Energy and Combustion Science, 2011, vol. 37, no. 6, pp. 669–715.CrossRefGoogle Scholar
  7. 7.
    Bekdemir, C., Somers, B., and de Goey, P., DNS with Detailed and Tabulated Chemistry of Engine Relevant Igniting Systems, Combustion and Flame, 2014, vol. 161, no. 1, pp. 210–221.CrossRefGoogle Scholar
  8. 8.
    Sidorov, A.E., Shevchyuk, V.G., and Kondrat’ev, E.N., Conductive-Radiative Model of a Laminar Flame in Dust Suspensions, Combustion, Explosion, and Shock Waves, 2013, vol. 49, no. 3, pp. 257–263.CrossRefGoogle Scholar
  9. 9.
    Fedorov, A.V., Ignition of Gaseous Suspensions in an Interacting Continuum Regime, Combustion, Explosion, and Shock Waves, 1998, vol. 34, no. 4 pp. 418–425.CrossRefGoogle Scholar
  10. 10.
    Krainov, A.Yu., Self-Ignition of a Two-Component Gas Suspension, Combustion, Explosion, and Shock Waves, 1999, vol. 35, no. 5, pp. 468–475.CrossRefGoogle Scholar
  11. 11.
    Vasil’ev, A.A., Vasil’ev, V.A., Calculated and Experimental Parameters of Combustion and Detonation of Mixtures Based on Methane and Coal Dust, Vest. Nauch. Tsentr. Bezop. Rab. Ugol. Prom., 2016, no. 2, pp. 8–39.Google Scholar
  12. 12.
    Oparin, V.N., Kiryaeva, T.A., Gavrilov, V.Yu., Tanashev, Yu.Yu., and Bolotov, V.A, Initiation of Underground Fire Sources, J. Min. Sci., 2016, vol. 52, no. 3, pp. 576–592.CrossRefGoogle Scholar
  13. 13.
    Oparin, V.N., Theoretical Fundamentals to Describe Interaction of Geomechanical and Physicochemical Processes in Coal Seams, J. Min. Sci., 2017, vol. 53, no. 2, pp. 201–215.CrossRefGoogle Scholar
  14. 14.
    Chanyshev, A.I., A Method to Determine a Body’s Thermal State, J. Min. Sci., 2012, vol. 48, no. 4, pp. 660–668.CrossRefGoogle Scholar
  15. 15.
    Lykov, A.V., Teplomassoobmen (Heat and Mass Transfer), Moscow: Energiya, 1978.Google Scholar
  16. 16.
    Pontryagin, L.S., Obyknovennye differentsial’nye uravneniya (Ordinary Differential Equations), Moscow: Nauka, 1974.Google Scholar
  17. 17.
    Samarsky, A.A., Gulin, A.V., Chislennye metody (Numerical Methods), Moscow: Nauka, 1989.Google Scholar
  18. 18.
    Lindenau, N.I., Maevskaya, V.M. Vakhrusheva, E.S., et al., Katalog ugley SSSR, sklonnykh k samovozgoraniyu (Directory of Coal of the USSR, Prone to Spontaneous Combustion), Moscow: Nedra, 1982.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • S. V. Cherdantsev
    • 1
    Email author
  • Li Hi Un
    • 1
  • Yu. M. Filatov
    • 1
  • D. V. Botvenko
    • 1
  • P. A. Shlapakov
    • 1
  • V. V. Kolykhalov
    • 1
  1. 1.VostNII Science Center for Safety in the Mining IndustryKemerovoRussia

Personalised recommendations