Journal of Mining Science

, Volume 54, Issue 2, pp 306–314 | Cite as

Efficient Physicochemical Treatment Technology for Nepheline Concentrates

  • V. S. RimkevichEmail author
  • A. P. Sorokin
  • A. A. Pushkin
  • I. V. Girenko
Mineral Dressing


The processes of physicochemical treatment of nepheline concentrates are studied theoretically and experimentally, and the optimal conditions are determined for the integrated fluoride–ammonium recovery of different useful components. The enabling innovative technology is proposed for the production of amorphous silica, alumina, red iron oxide, calcium fluoride and other marketable products.


Nepheline concentrates physicochemical treatment integrated recovery enabling technology amorphous silica alumina useful components 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Voitkevich, G.V. and Bessonov, O.A., Khimicheskaya evolyutsiya Zemli (Chemical Evolution of the Earth), Moscow: Nedra, 1986.Google Scholar
  2. 2.
    Sizyakov, V.M., Shmorgunenko, N.S., Smirnov, M.N., and Dantsit, S.Ya., Processes for Integrated Treatment of Alumosilica Rocks Intended for Production of Alumina and Other Products, Nefelinovoe syr’yo (Raw Nepheline Materials), Moscow: Nauka, 1981, pp. 289–309.Google Scholar
  3. 3.
    Zakharov, V.I., Kalinnikov, V.T., Matveev, V.A., and Maiorov, D.V., Khimiko-tekhnologicheskie osnovy i razrabotka novykh napravlenii kompleksnoi pererabotki i ispol’zovaniya shchelochnykh alyumosilikatov (Chemical and Technological Fundamentals and Development of Novel Trends in Integrated Processing and Utilization of Alkali Alumosicates), Apatity: KNTs RAN, 1995.Google Scholar
  4. 4.
    Matveev, V.A., Phosphoric Acid Process to Treat Nepheline-Bearing Materials, Khim. Tekhnologiya, 2008, no. 7, pp. 297–300.Google Scholar
  5. 5.
    Matveev, V.A., Perspectives to Apply Sulphuric Acid–Sulfite Process for Integrated Nepheline Processing, Tsv. Met., 2008, no. 9, pp. 47–50.Google Scholar
  6. 6.
    Makarov, D.V., Belyaevsky, A.T., Men’shikov, Yu.P., Nesterov, D.P., and Yusupov, M.F., A Study of the Mechanism and Kinetics of Interaction between Nepheline Powder and Ammonium Hydrofluoride, Russian Journal of Applied Chemistry, 2007, vol. 80, no. 2, pp. 175–180.CrossRefGoogle Scholar
  7. 7.
    Zhang, W., Hu, Z., Liu, Y., Chen, H., Gao, S., and Gaschnig, R.M., Total Rock Dissolution Using Ammonium Bifluoride (NH4HF2) in Screw-Top Teflon Vials: a New Development in Open-Vessel Digestion, Anal. Chem., 2012, vol. 84, no. 24, pp. 10686–10693.CrossRefGoogle Scholar
  8. 8.
    Rimkevich, V.S., Sorokin, A.P., and Girenko, I.V., Fluoride Technique to Process Cyanidte Concentrates with Integrated Recovery of Valuable Components, GIAB, 2014, no. 7, pp. 137–147.Google Scholar
  9. 9.
    Khalil, N.M., Agila, R., Othman, H.A., and Ewais, E.M., Improvement of the Extraction Efficiency of Nanosized Alumina from Libyan Clay, InterCeram, International Ceramic Review, 2009, vol. 58, no. 6, pp. 388–393.Google Scholar
  10. 10.
    Gulyuta, M.A., Andreev, V.A., Buinovsky, A.S., et al., Research of Activation of Persistent Uranium Ores by Ammonium Fluoride Solutions, Izv. TPU, 2014, vol. 324, no. 3, pp. 53–59.Google Scholar
  11. 11.
    Rimkevich, V.S., Sorokin, A.P., Pushkin, A.A., and Girenko, I.V., Integrated Processing Technology for Calcium-Bearing Alumosilicate Raw Material, J. Min. Sci., 2017, vol. 53, no. 4, pp. 762–770.CrossRefGoogle Scholar
  12. 12.
    Khimicheskaya tekhnologiya neorganicheskikh veshchestv (Chemical Technology of Inorganic Matter): Manual, ed. Akhmetova T.G., Moscow: Vyssh. Shkola, 2002.Google Scholar
  13. 13.
    Melent’ev, G.B. and Delitsyn, L.M., Nepheline as Unique Raw Mineral-and-Chemical Material of the XXI Century: Mineral Resource and Environmental Challenges and Priorities in their Solution, Ekol. Prom. Proizv., 2004, no. 2, pp. 51–68.Google Scholar
  14. 14.
    Cherkasov, G.N., Prusevich, A.M., and Sukharina, A.M., Neboksitovoe alyuminievoe syr’yo Sibiri (Nonbauxite Aluminium-Bearing Material Reserves in Siberia), Moscow: Nedra, 1988.Google Scholar
  15. 15.
    Kratky spravochnik fiziko-khimicheskikh velichin (Concise Critical Tables), ed. Ravdel’ A.A. and Ponomareva A.M., Leningrad: Khimiya, 1983.Google Scholar
  16. 16.
    Lidin, R.A., Andreeva, L.P., and Molochko, V.A., Spravochnik po neorganicheskoi khimii (Inorganic Chemistry Reference Book), Moscow: Khimiya, 1987.Google Scholar
  17. 17.
    Stromberg, A.G. and Semchenko, D.P., Fizicheskaya Khimiya (Physical Chemistry), Moscow: Khimiya, 1999.Google Scholar
  18. 18.
    Demyanova, L.P., Rimkevich, V.S., and Buynovskiy, A.S., Elaboration of Nanometric Amorphous Silica from Quartz-Based Minerals Using the Fluorination Method, J. of Fluorine Chemistry, 2011, Vol. 132, no. 12, pp. 1067–1071.CrossRefGoogle Scholar
  19. 19.
    D’yachenko, A.N. and Kraidenko, R.I., Fluorine-Ammonium Process to Separate Silicon–Iron–Copper–Nickel Concentrate into Discrete Oxides, Izv. TPU, 2007, vol. 311, no. 3, pp. 38–41.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. S. Rimkevich
    • 1
    Email author
  • A. P. Sorokin
    • 1
    • 2
  • A. A. Pushkin
    • 1
  • I. V. Girenko
    • 1
  1. 1.Institute of Geology and Nature Management, Far East BranchRussian Academy of SciencesBlagoveshchenskRussia
  2. 2.Amur Science Center, Far East BranchRussian Academy of SciencesBlagoveshchenskRussia

Personalised recommendations