Advertisement

Journal of Mining Science

, Volume 54, Issue 2, pp 187–193 | Cite as

Electromagnetic Emission of Rocks after Large-Scale Blasts

  • A. A. Bespal’koEmail author
  • L. V. Yavorovich
  • A. A. Eremenko
  • V. A. Shtirts
Geomechanics
  • 5 Downloads

Abstract

Physical modeling results on electromagnetic response of rock mass to low-energy impacts in the Tashtagol iron ore deposit are presented. It is found that multiple low-energy series of impacts initially increase the amplitudes of electromagnetic signals which later on decrease to the same level. This circumstance is indicative of the fact that the slowly varying levels of electromagnetic signals recorded after large-scale blasts are governed by displacements of rocks on various slip planes. The changes in the stress–strain state of rocks proceed slowly taking from units to tens of hours.

Keywords

Electromagnetic emission rock blast deposit amplitude friction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bespal’ko, A.A., Yavorovich, L.V., Viitman, E.E., Fedotov, P.I., and Shtirts, V.A. Dynamoelectric energy transfers in a rock mass under explosion load in terms of the Tashtagol mine, J. Min. Sci., 2010, vol. 46, no. 2, pp. 136–142.CrossRefGoogle Scholar
  2. 2.
    Bespal’ko, A.A., Yavorovich, L.V., Bombizov, A.A., and Loshchilov, A.G., Electromagnetic signal recorder for stress state control in rocks, Kontrol’. Diagnostika, 2011, no. 11, pp. 14–17.Google Scholar
  3. 3.
    Eremenko, A.A., Fedorenko, A.N., and Kopytov, A.I., Provedenie i kreplenie gornykh vyrabotok v udaroopasnykh zonakh zhelezorudnykh mestorozhdenii (Roadway Construction and Supports in the Rockburst-Hazardous Areas at Iron-Ore Deposits), Novosibirsk: Nauka, 2008.Google Scholar
  4. 4.
    Eremenko, A.A., Bespal’ko, A.A., Eremenko, V.A., and Yavorovich, L.V., Diagnostika geofizicheskikh predvestnikov geodinamicheskikh yavlenii i razvitie geotekhnologii razrabotki zhelezorudnykh mestorozhdenii (Detection of Geophysical Signs of Geodynamic Events and Geotechnology for Iron Ore Mining), Novosibirsk: Nauka, 2016.Google Scholar
  5. 5.
    Stavrogin, A.N. and Protosenya, A.G., Prochnost’ gornykh porod i ustoichivost’ vyrabotok na bol’shikh glubinakh (Strength of Rocks and Stability of Excavations at Great Depths), Moscow: Nedra, 1985.Google Scholar
  6. 6.
    Egorov, P.V., Shtumpf, G.G., Renev, A.A., Shevelev, Yu.A., Makhrakov, I.V., and Sidorchuk, V.V., Geomekhanika (Geomechanics), Kemerovo: KGTU, 2002.Google Scholar
  7. 7.
    Sobolev, G.A. and Demin, V.M., Kinetics of electromagnetic and acoustic emissions as a precursor of instability at contacts of blocks, Dokl. Akad. Nauk SSSR, 1988, vol. 303, no. 4, pp. 834–836.Google Scholar
  8. 8.
    Lasukov, V.V. and Mastov, S.R., Electromagnetic precursor of rock collapse, J. Min. Sci., 1993, vol. 29, no. 2, pp. 106–110.CrossRefGoogle Scholar
  9. 9.
    Lasukov, V.V., Ozone, percolation and aerosol mechanisms of an electromagnetic earthquake predictor, Russian Physics J., 2000, vol. 43, no. 2, pp. 143–148.CrossRefGoogle Scholar
  10. 10.
    Ivanov, V.V., Egorov, P.V., Kolpakova, L.A., and Pimonov, A.G., Crack dynamics and electromagnetic emission by loaded rock masses, J. Soviet Mining, 1988, vol. 24, no. 5, pp. 406–412.CrossRefGoogle Scholar
  11. 11.
    Yakovitskaya, G.E., Analysis of spectrum characteristics and attenuation of electromagnetic emission signals under destruction of rocks, Synopsis of Cand. Tech. Sci. Thesis, Novosibirsk, 1991.Google Scholar
  12. 12.
    Gordeev, V.F. and Lasukov, V.V., Physics of the electromagnetic emission method of quality control of materials and its prospects, Russian Physics J., 2001, vol. 44, no. 7, pp. 771–778.CrossRefGoogle Scholar
  13. 13.
    Golyamin, I.P., Ul’trazvuk. Malen’kaya entsiklopediya (Ultrasound. Little Encyclopedia), 1979.Google Scholar
  14. 14.
    Oparin V. N., Yushkin V. F., Akinin A. A., and Balmashova E. G. A new scale of hierarchically structured representations as a characteristic for ranking entities in a geomedium, J. Min. Sci., 1998, vol. 34, no. 5, pp. 387–401.CrossRefGoogle Scholar
  15. 15.
    Gornaya entsiklopediya. Rubriki: Geologiya poleznykh iskopaemykh. Akusticheskie svoistva gornykh porod (Mining Encyclopedia. Sections: Geology of Minerals. Acoustic Properties of Rocks), Moscow: Sov. entsikl., 1984–1991.Google Scholar
  16. 16.
    Rzhevsky, V.V. and Yamshchikov, V.S., Akusticheskie metody issledovaniya i kontrolya gornykh porod v massive (Acoustic Methods of Research and Control of Rock Mass), Moscow: Nauka, 1983.Google Scholar
  17. 17.
    Khaikin, S.E., Fizicheskie osnovy mekhaniki (Basic Physics of Mechanics), Moscow: Nauka, 1971.Google Scholar
  18. 18.
    Lobanova T. V., Novikova E. V. Rock movement at the Tashtagol iron-ore deposit in the course of largescale underground blasting, J. Min. Sci., 2008, vol. 44, no. 3, pp. 245–252.CrossRefGoogle Scholar
  19. 19.
    Sashurin, A.D., Sdvizhenie gornykh porod na rudnikakh chernoi metallurgii (Movement of Rocks in the Iron and Steel Industry Mines), Yekaterinburg: IGD UrO RAN, 1999.Google Scholar
  20. 20.
    Lobanova, T.V., Rock mass movement in the Tashtagol deposit is a reflection of geodynamic processes, Vestn. SGIU, 2012, no. 1, pp. 16–22.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. A. Bespal’ko
    • 1
    Email author
  • L. V. Yavorovich
    • 1
  • A. A. Eremenko
    • 2
  • V. A. Shtirts
    • 3
  1. 1.National Research Tomsk Polytechnic UniversityTomskRussia
  2. 2.Chinakal Institute of Mining, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  3. 3.Gornaya Shoria DivisionEVRAZRUDATashtagolRussia

Personalised recommendations