Journal of Mining Science

, Volume 53, Issue 3, pp 573–584 | Cite as

Limit Moisture Content of Coal Concentrate Produced with Industrial Drainers

  • M. I. Shilyaev
  • A. I. Gorbunkov
  • A. R. Bogomolov
  • E. M. Khromova
  • E. Yu. Temnikova
Mineral Dressing
  • 1 Downloads

Abstract

The process of coal suspension dewatering in centrifuges and pneumatic drainage in vacuum filters and filter presses is theoretically studied. From the condition of equal centrifugal forces and surface tension applied to liquid in a granular layer of the working element of the centrifuge bowl, the analytical relation is obtained to calculate residual concentration of liquid in the treated layer. It is shown that calculation results obtained using the relation, rated data and specifications of industrial drainers agree well. With regard to the equality between the kinetic energy applied by filtration flow in the granular layer to the liquid film in the granules and the work to overcome surface tension forces that keep the film on the surface of the granules, the analytical relation is obtained to calculate residual concentration of a liquid in the layer under pneumatic drainage. The estimates prove realistic nature of the results obtained with the latter relation as well as their agreement with the test and rated data of industrial vacuum filters and filter presses.

Keywords

Dewatering coal suspension centrifuge process surface tension coefficient dynamic viscosity coefficient fractional void volume coal particle diameter vacuum filter filter press moisture content 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bedran’, N.G., Mashiny dlya obogashcheniya poleznykh iskopaemykh (Mineral Processing Machinery), Kiev, Donetsk: Vishcha Shk., 1980.Google Scholar
  2. 2.
    Karmazin, V.I., Sergo, E.E., Zhendrinsky, A.P., et al., Protsessy i mashiny dlya obogashcheniya poleznykh iskopaemykh (Mineral Processing Techniques and Machinery), Moscow: Nedra, 1974.Google Scholar
  3. 3.
    Okonishnikov, A.I. and Dolgopolov, L.N., Otsenka urovnya kachestva oborudovaniya ugleobogatitel’nykh fabrik (Enrichment Quality Evaluation at Coal Concentrators), Moscow: Nedra, 1981.Google Scholar
  4. 4.
    Khaidakin, V.I., Butovetsky, V.S., Koshvar’, M.N., et al., Naladka i ekspluatatsiya tekhnologicheskikh kompleksov ugleobogatitel’nykh fabrik (Fitting and Exploitation of Technological Complex at a Coal Concentrator), Moscow: Nedra, 1986.Google Scholar
  5. 5.
    Blagov, I.S., Kotkin, A.M., Cherevko, I.E., et al., Oborudovanie dlya obogashcheniya uglya (Coal Processing Equipment), Moscow: Nedra, 1979.Google Scholar
  6. 6.
    Chuyanov, G.G., Obezvozhivanie, pyleulavlivanie i okhrana okruzhayushchei sredy (Dewatering, Dust Collection and Environment Protection), Moscow: Nedra, 1987.Google Scholar
  7. 7.
    Goldberg, Yu.S., Gontarenko, A.A., Barishpolets, V.T., and Gishchuk, B.V., Protsessy i oborudovanie dlya obezvozhivaniya rud (Ore Dewatering Techniques and Equipment), Moscow: Nedra, 1977.Google Scholar
  8. 8.
    Aerov, M.E., Todes, O.M., and Narinsky, D.A., Apparaty so statsionarnym zernistym sloem (Stationary Granular Bed Apparatus), Leningrad: Khimiya, 1979.Google Scholar
  9. 9.
    Shiryaeva, E.V., Gutin, Yu.V., and Aksenov, A.A., Assessment of Residue Filtration and Dewatering Parameters of Industrial Filters, Chem. Neftegaz. Mashinostr., 2008, no. 11, pp. 5–9.Google Scholar
  10. 10.
    Shiryaeva, E.V. and Gutin, Yu.V., Selection of Basic and Associated Hardware for Industrial Vacuum Filtration Facilities, Khem. Neftegaz. Mashinostr., 2010, no. 5, pp. 33–37.Google Scholar
  11. 11.
    Mel Laurila, Using Belt Vacuum Filters to Dewater Fine Coal, Coal Age, 1998, vol. 103, no. 1, pp. 40–147.Google Scholar
  12. 12.
    Fisher, M.C. and Shill, M.G., The Dewatering of Fine Coal Refuse with a Continuous High Performance Belt Filter Press, Min. Engin., 1981, vol. 33, no. 10, pp. 1482–1484.Google Scholar
  13. 13.
    Williams, K.P., Fletcher, R.M., and Strydom, P.J., Pilot Scale Belt Press Filtration of Coal Refuse the Effect of Polymeric Flocculants, Mine and Quarry, 1990, vol. 19, no. 6, pp. 26–129.Google Scholar
  14. 14.
    Shilyaev, M.I., Khromova, E.M., and Bogomolov, A.R., Intensifikatsiya teplomassoobmena v dispersnykh sredakh pri kondensatsii i isparenii (Intensification of Heat-Mass Exchange in Dispersed Media under Condensation and Evaporation), Tomsk: Tomsk Gos. Univ. Arkh. Stroit., 2010.Google Scholar
  15. 15.
    Bruk, O.L., Fil’trovanie ugol’nykh suspenzii (Filtration of Coal Suspensions), Moscow: Nedra, 1978.Google Scholar
  16. 16.
    Antipenko, L.A., Tekhnologicheskie reglamenty obogatitel’nykh fabric Kuznetskogo basseina (Production Procedures of Kuznetsk Basin Concentrators), Prokopievsk: Sib NIIUgleobogashch., 2003.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. I. Shilyaev
    • 1
  • A. I. Gorbunkov
    • 2
  • A. R. Bogomolov
    • 3
  • E. M. Khromova
    • 1
  • E. Yu. Temnikova
    • 4
  1. 1.Tomsk State University of Architecture and BuildingTomskRussia
  2. 2.Chemicals Plant Research and Production AssociationKemerovoRussia
  3. 3.Kutateladze Institute of Thermophysics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  4. 4.Gorbachev Kuzbass State Technical UniversityKemerovoRussia

Personalised recommendations