Journal of Mining Science

, Volume 53, Issue 2, pp 259–264 | Cite as

Laboratory selective disintegration of kimberlite

  • Yu. M. Grigor’ev
  • V. P. Mironov
  • P. P. Tarasov
Rock Failure
  • 19 Downloads

Abstract

For the selective disintegration of kimberlite and dissociation of diamond crystals preserving their natural integrity undisturbed, the authors have designed a tool with cutters having hardness lower than diamonds but higher than binding minerals in kimberlite. The article gives the test results on the prototype of the heterogeneous material disintegrator on soft kimberlite extracted from Manchary pipe. The prototype includes disc brushes made of high-strength steel wire. The prototype realizing selective disintegration is a preproduction model of lab, semi-commercial and commercial disintegrators. The method is applicable to recover hard particles from geological samples.

Keywords

Kimberlite diamond Manchary pipe crushing grinding disintegration attrition granulometric analysis mineral mineralogical analysis laboratory prototype 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chanturia, V.A., Weisberg, L.A., and Kozlov, A.P., Priority Research Directions in Mineral Processing, Obogashch. Rud, 2014, no. 2, pp. 3–9.CrossRefGoogle Scholar
  2. 2.
    Prokopenko, A.V., Savitsky, L.V., Grigor’ev, Yu.M., and Matveev, A.I., Investigation into Diamond Damageability on Crushing of Zarnitsa Pipe Ore at DKD-300 Rotor Mill, Vest. Irk. Gos. Tekh. Univer., 2012, no. 7(66), pp. 108–112.Google Scholar
  3. 3.
    Yamov, A.V., Kuznetsov, I.A., and Babuk, A.V., New Technology of Coarse Crushing of Kimberlite Ores at the Concentration Plant of Lomonosov Ore Dressing and Processing Enterprise, Gorny Zh., 2014, no. 1, pp. 75–79.Google Scholar
  4. 4.
    Van der Westhuyzen, P., Bouwer, W., and Jakins, A., Current Trends in the Development of New or Optimization of Existing Diamond Processing Plants, with Focus on Beneficiation, J. South. African Inst. Min. Metall., 2014, vol. 114, no. 7, pp. 537–546.Google Scholar
  5. 5.
    Golovanov, A.V., High-Frequency Machinery for Disintegration of Rocks is One of Energy-Saving Trends in Ore Preparation, Gorn. Oborud. Elektromekh., 2015, no. 1(110), pp. 16–19.Google Scholar
  6. 6.
    Didenko, A.N., Zverev, B.V., and Prokopenko, A.V., UNF-Milling of Hard Rocks in Terms of Kimberlite, Dokl. Akad. Nauk., 2005, vol. 403, no. 2, pp. 187–188.Google Scholar
  7. 7.
    Boshoff, E.T., Morkel, J., Vermaak, M.K.G., and Pistorius, P.C., Kimberlite Degradation: The Role of Cation Type, Minerals Engineering, 2007, no. 20, pp. 1351–1359.CrossRefGoogle Scholar
  8. 8.
    Shor, R., Weldon, R., Janse, (Bram) A.J.A., Breeding, Ch.M., and Shirey, S.B., Letsengs Unique Diamond Proposition, Gems & Gemology, 2015, vol. 51, no. 3, pp. 280–299.Google Scholar
  9. 9.
    Bobina, A.V. and Grabsky, A.A., Experimental Investigation into Regularities of Commercial Rock Attrition in Gyroscopic Grinding Devices, Sovrem. Probl. Nauki Obrazov., 2012, no. 6, p.158.Google Scholar
  10. 10.
    Grigor’ev, Yu.M., Mironov, V.P., and Yakovlev, B.V., Mechanical Disintegration of Kimberlite, Proc. All-Russian Sci.-Pract. Conf. Geomechanical and Geotechnical Problems of Profitable Development of Solid Mineral Deposits in Northern and North-Eastern Regions, Russia, Yakutsk: Inst. Merzlotoved. SO RAN, 2011, pp. 239–241.Google Scholar
  11. 11.
    Borshchev, V.Ya., Oborudovanie dlya izmel’cheniya materialov (Material Grinding Machinery), Tambov: Tamb. Gos. Tekhn. Univer., 2004.Google Scholar
  12. 12.
    Mironov, V.P. and Grigor’ev, Yu.M., RF Patent no. 114877, Byull. Izobret., 2012, no. 11; Electronic resource: URL:http://www1.fips.ru/Archive/PAT/2012FULL/2012.04.20/INDEX_RU.HTM.Google Scholar
  13. 13.
    Mironov, V.P. and Grigor’ev, Yu.M., RF Patent no. 124189. Byull. Izobret., 2013, no. 2; Electronic Resource: URL:http://www1.fips.ru/Archive/PAT/2013FULL/2013.01.20/INDEX_RU.HTM.Google Scholar
  14. 14.
    Mironov, V.P., Grigor’ev, Yu.M., and Tarasov, P.P., Perspectives to Apply Mechanical Kimberlite Disintegration in Diamond Industry, Gorny Zh., 2012, no. 12, pp. 63–66.Google Scholar
  15. 15.
    Smelov, A.P., Andreev, A.P., Altukhova, Z.A., et al., Manchary Pipe Kimberlites: New Kimberlite Field in the Central Yakutiya, Geolog. Geofiz., 2010, vol. 51, no. 1, pp. 153–159.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Yu. M. Grigor’ev
    • 1
  • V. P. Mironov
    • 2
  • P. P. Tarasov
    • 1
    • 3
  1. 1.Ammosov North-Eastern Federal UniversityYakutskRussia
  2. 2.Irkutsk Division, Institute of Laser Physics, Siberian BranchRussian Academy of SciencesIrkutskRussia
  3. 3.Larionov Institute of Physical and Technical Problems of the North, Siberian BranchRussian Academy of SciencesYakutskRussia

Personalised recommendations