Skip to main content
Log in

Gas diffusion coefficient in coal: calculation of tangent slope accuracy through the inflection point determination

  • Geomechanics
  • Published:
Journal of Mining Science Aims and scope

Abstract

This investigation aims to develop an accurate method to calculate the tangent slope (b) - a fundamental parameter to calculate gas diffusion coefficients under different pressures - using inflection point determinations. The authors also studied the different tangent slope behaviours depending on the experimental gas sorption used. The single Langmuir model for individual gases and the extended Langmuir model, for multicomponent gas mixtures were applied to fit experimental gas sorption isotherm data. Two coals were selected in order to minimize and/or avoid the maceral composition and vitrinite mean random reflectance effects. Samples were submitted to three different gas compositions, viz. 99.999% CH4; 99.999% CO2; and a gas mixture containing 74.99% CH4 + 19.99% CO2 + 5.02% N2. Results showed that the first and the second derivatives calculated to define the first inflection points represent exactly the final limit of tangent slopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stach, E., Mackowsky, M.-Th., Teichmüller, M., Taylor, G.H., Chandra, D., and Teichmüller, R., Stach’s Textbook of Coal Petrology, 3rd Ed., 535 pp. Gebrüder Borntraeger, Berlin, Stuttgart, 1982.

    Google Scholar 

  2. Mavor, M.J., Coal Natural Reservoir Properties and Formation Evaluation Techniques, Gas Research Institute, Report GRI-95/0168, Chicago, Illinois, 1995.

    Google Scholar 

  3. Mavor, M.J. and Pratt, T.J., Improved Methodology for Determining Total Gas Content, Vol. II: Comparative Evaluation of the Accuracy of Gas-in-Place Estimates and Review of Lost Gas Models, Gas Research Institute, Report GRI-94/0429, Chicago, Illinois, 1996.

    Google Scholar 

  4. Faiz, M.M., Saghafi, A., Barclay, S.A., Stalker, L., Sherwood, N.R., and Whitford, D.J., Evaluating Geological sSquestration of CO2 in Bituminous Coals: The Southern Sydney Basin, Australia as Natural Analogue, Int. J. Greenhouse Gas Control, 2007, vol. 1, no. 2, pp. 223–235.

    Article  Google Scholar 

  5. Mazumder, S. and Wolf, K.-H.A.A., Differential Swelling and Permeability Change of Coal in Response to CO2 Injection for ECBM, Int. J. Coal Geol., 2008, vol. 74, no. 2, pp. 123–138.

    Article  Google Scholar 

  6. Saghafi, A., Pinetown, K.L., Grobler, P.G., and van Heerden, J.H.P., CO2 Storage Potential of South African Coals and Gas Entrapment Enhancement due to IgneousIintrusions, Int. J. Coal Geol., 2008, vol. 73, no. 1, pp. 74–87.

    Article  Google Scholar 

  7. Crosdale, P. and Beamish, B., Maceral Effects on Methane Sorption by Coal, New Developments in Coal Geology—Symposium Proc., J.W. Beeston (Ed.), Brisbane, 1993, pp. 93–98.

    Google Scholar 

  8. Rodrigues, C.F. and Lemos de Sousa, M.J. Further Results on the Influence of Moisture in Coal Adsorption Isotherms, Abstracts Volume of the 51st Meeting of the International Committee for Coal and Organic Petrology, Bucharest, 1999, Roman. J. Mineral., 1999, vol. 79, Suppl. 1.

    Google Scholar 

  9. Lu, L., Sahajwalla, V., Kong, C., and Harris, D., Quantitative X-Ray Diffraction Analysis and Its Application to Various Coals, Carbon, 2001, vol. 39, no. 12, pp. 1821–1833.

    Article  Google Scholar 

  10. Cui, X., Bustin, R.M., and Dipple, G., Differential Transport of CO2 and CH4 in Coalbed Aquifers: Implications for Coalbed Gas Distribution and Composition, AAPG Bull., 2004, vol. 88, no. 8, pp. 1149–1161.

    Article  Google Scholar 

  11. Rodrigues, C.F., Dinis, M.A.P., and Lemos de Sousa, M.J., Coal as an Unconventional Reservoir for a CO2 Safe Geological Sequestration Solution, Proc. Global Conf. Global Warming 2011, Lisbon, 2011.

    Google Scholar 

  12. Ruckenstein, E., Vaidyanathan, A.S., and Youngquist, G.R., Sorption by Solids with Bidisperse Pore Structures, Chem. Eng. Sci., 1971, vol. 26, no. 9, pp. 1305–1318.

    Article  Google Scholar 

  13. Kolesar, J.E. and Ertekin, T., The Unsteady-State Nature of Sorption and Diffusion Phenomena in the Micropore Structure of Coal, Proc. SPE Unconventional Gas Technology Symp., Society of Petroleum Engineers, Louisville, KY, 1986, SPE Paper No. 15233, pp. 289–314.

    Google Scholar 

  14. Rodrigues, C.F. and Lemos de Sousa, M.J., The Measurement of Coal Porosity with Different Gases, Int. J. Coal Geol., 2002, vol. 48, no. 3, pp. 245–251.

    Article  Google Scholar 

  15. Dinis, M.A.D., The Study of the Gas Diffusion Process in Coals Using Langmuir Isotherms, PhD Dissertation, University of Fernando Pessoa, Porto, Portugal, 2010.

    Google Scholar 

  16. Rodrigues, C., Dinis, M.A., and Lemos de Sousa M.J., Unconventional Coal Reservoir for CO2 Safe Geological Sequestration, Int. J. Global Warming, 2013, vol. 5, no. 1, pp. 46–66.

    Article  Google Scholar 

  17. Rodrigues, C.F., Laiginhas, C., Fernandes, M., Lemos de Sousa, M.J., and Dinis, M.A.P., The Coal Cleat System: A New Approach to Its Study, J. Rock Mech. Geotech. Eng., 2014, vol. 6, no. 3, pp. 208–218.

    Article  Google Scholar 

  18. White, C.M., Smith, D.H., Jones, K.L., Goodman, A.L., Jikich, S.A., LaCount, R.B., DuBose, S.B., Ozdemir, E., Morsi, B.I., and Schroeder, K.T., Sequestration of Carbon Dioxide in Coal with Enhanced Coalbed Methane Recovery—A Review, Energ. Fuel., 2005, vol. 19, no. 3, pp. 659–724.

    Article  Google Scholar 

  19. Cui, X., Bustin, R.M. and Dipple, G., Selective Transport of CO2, CH4, and N2 in Coals: Insights from Modeling of Experimental Gas Adsorption Data, Fuel, 2004, vol. 83, no. 3, pp. 293–303.

    Article  Google Scholar 

  20. Saghafi, A., Faiz, M., and Roberts, D., CO2 Storage and Gas Diffusivity Properties of Coals from Sydney Basin, Australia,” Int. J. Coal Geol., 2007, vol. 70, pp. 240–254.

    Article  Google Scholar 

  21. Rodrigues, C.F., Dinis, M.A.P., and Lemos de Sousa, M.J., Gas Content Derivative Data versus Diffusion Coefficient, 60th ICCP (International Committee for Coal and Organic Petrology) and 25th TSOP (The Society for Organic Petrology): Program Abstracts of the International Conference on Coal and Organic Petrology ICCP-TSOP Join Meeting, Oviedo, Spain, 2008.

    Google Scholar 

  22. Dinis, M.A.P., Rodrigues, C.F., and Lemos de Sousa, M.J., Gas Storage versus Gas Circulation in North Atlantic and Gondwana Coal Types, Int. J. Energ. Clean. Env., 2010, vol. 11, nos. 1–4, pp. 35–40.

    Article  Google Scholar 

  23. Mehrer, H., Fundamentals, Methods, Materials, Diffusion-Controlled Processes. Springer Series in Solid State Sciences, vol. 155, New York, 2007.

    Google Scholar 

  24. Bielicki, R.J., Perkins, J.H., and Kissel, F.N., Methane Diffusion Parameters for Sized Coal Particles, Report of Investigations 7697, US Bureau of Mines, 1972, pp. 1–12.

    Google Scholar 

  25. Mavor, M.J., Owen, L.B., and Pratt, T.J., Measurement and Evaluation of Coal Sorption Isotherm Data, 65th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, Society of Petroleum Engineers, New Orleans, A, 1990, SPE Paper 20728, pp. 157–170.

    Google Scholar 

  26. Pope, J., Buttry, D., Lamarre, R., Noecker, B., MacDonald, S., LaReau, B., Malone, P., van Lieu, N., Petroski, D., Accurso, M., Harak, D., Kutz, R., Luker, S., and Martin, R., Downhole Geochemical Analysis of Gas Content and Critical Desorption Pressure for Carbonaceous Reservoirs, Publications–West Texas Geological Society, 2006, vol. 115.

  27. Rodrigues, C. and Lemos de Sousa, M.J., Coal Gas Adsorption/Desorption Isotherms versus Diffusion Process, Book of Abstracts of Ninth International Conference on Energy for a Clean Environment, Clean Air 2007, Póvoa de Varzim, Portugal, 2007.

    Google Scholar 

  28. Rodrigues, C.F., Dinis M.A.P., and Lemos de Sousa, M.J., Gas Content Derivative Data Versus Diffusion Coefficient, Energ. Explor. Exploit., forthcoming 2016.

    Google Scholar 

  29. Krooss, B.M., van Bergen, F., Gensterblum, Y., Siemons, N., Pagnier, H.J.M., and David, P. High-Pressure Methane and Carbon Dioxide Adsorption on Dry and Moisture-Equilibrated Pennsylvanian Coals, Int. J. Coal Geol., 2002, vol. 51, no. 2, pp. 69–92.

    Article  Google Scholar 

  30. Siemons, N. and Busch, A., Measurement and Interpretation of Supercritical CO2 Sorption on Various Coals, Int. J. Coal Geol., 2007, vol. 69, no. 4, pp. 229–242.

    Article  Google Scholar 

  31. Rodrigues, C., Pinheiro, H.J., and Lemos de Sousa, M.J., Sorption Isotherms in the study of Coalbed Methane–some experimental facts, Proceedings Coal Indaba 2000, 6th Coal Science and Technology Conference, Changing Trends in Energy Use from Fossil Fuel, Forways, South Africa, The Fossil Fuel Foundation, 2000, pp. 1–9.

    Google Scholar 

  32. Rodrigues, C., Pinheiro, H.J., and Lemos de Sousa, M.J., Comparative Study of the Influence of Raw Coal, and Float Fractions on Gas Sorption Isotherms, Abstracts of the TSOP/ICCP Session, The 53rd meeting of the International Committee for Coal and Organic Petrology, H.I. Petersen (Ed.), GEUS, Copenhagen, 2001, pp. 123–128.

    Google Scholar 

  33. Fitzgerald, J.E., Pan, Z., Sudibandriyo, M., Robinson Jr., R.L., Gasem, K.A.M., and Reeves, S., Adsorption of Methane, Nitrogen, Carbon Dioxide and Their Mixtures on Wet Tiffany Coal, Fuel, 2005, vol. 84, no. 18, pp. 2351–2363.

    Article  Google Scholar 

  34. Shi, J.Q. and Durucan, S., A Bidisperse Pore Diffusion Model for Methane Displacement Desorption in Coal by CO2 Injection*, Fuel, 2003, vol. 82, no. 10, pp. 1219–1229.

    Article  Google Scholar 

  35. Siemons, N., Busch, A., Bruining, H., Krooss, B.M., and Gensterblum, Y., Assessing the Kinetics and Capacity of Gas Adsorption in Coals by a Combined Adsorption/Diffusion Method, SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, Denver, 2003, SPE Paper 84340.

    Google Scholar 

  36. Busch, A., Gensterblum, Y., Krooss, B.M., and Littke, R., Methane and Carbon Dioxide Adsorption–Diffusion Experiments on Coal: Upscaling and Modeling, Int. J. Coal Geol., 2004, vol. 60, no. 2, pp. 151–168.

    Article  Google Scholar 

  37. Siemons, N., Bruining, J., and Krooss, B.M., Upscaled Diffusion in Coal Particles, Geol. Belg., 2004, vol. 7, nos. 3 and 4, pp. 129–135.

    Google Scholar 

  38. Akkutlu, I.Y. and Deutsch, C.V., Gas Adsorption/Diffusion in Bidisperse Coal Particles: Investigation for an Effective Diffusion Coefficient in Coalbeds, Proc. 7th Canadian Int. Petroleum Conf. Calgary, Canada, 2006, Paper 2006-111.

    Google Scholar 

  39. Rodrigues, C.F.A., The Application of Isotherm Studies to Evaluate the Coalbed Methane Potential of the Waterberg Basin, South Africa, PhD Dissertation, University of Oporto, Faculty of Sciences, Porto, Portugal, 2002.

    Google Scholar 

  40. Arri, L.E., Yee, D., Morgan, W.D., and Jeansonne, M.W., Modeling Coalbed Methane Production with Binary Gas Sorption, Proc. Society of Petroleum Engineers Rocky Mountain Regional Meeting, Casper, Wyoming, SPE Paper 24363, 1992, pp. 459–472.

    Google Scholar 

  41. Greaves, K.H., Owen, L.B., and McLennan, J.D., Multi-Component Gas Adsorption–Desorption Behaviour of Coal, Proc. Int. Coalbed Methane Symp., Tuscaloosa, Alabama, 1993, pp. 197–205.

    Google Scholar 

  42. Clarkson, C.R. and Bustin, R.M., Binary Gas Adsorption/Desorption Isotherms: Effect of Moisture and Coal Composition upon Carbon Dioxide Selectivity over Methane, Int. J. Coal Geol., 2000, vol. 42, no. 4, pp. 241–271.

    Article  Google Scholar 

  43. Jordan, D. and Smith, P., Mathematical Techniques: An Introduction for the Engineering, Physical, and Mathematical Sciences, fourth ed., Oxford University Press, Oxford, 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. P. Dinis.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, C.F., Dinis, M.A.P. & Lemos de Sousa, M.J. Gas diffusion coefficient in coal: calculation of tangent slope accuracy through the inflection point determination. J Min Sci 52, 87–101 (2016). https://doi.org/10.1134/S1062739116010162

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739116010162

Keywords

Navigation