Journal of Mining Science

, Volume 50, Issue 3, pp 448–464 | Cite as

Physical kinetics of coal-methane system: Mass transfer, pre-outburst events

  • E. P. Fel’dman
  • T. A. Vasilenko
  • N. A. Kalugina


The article gives the review of the present-day development in the physical kinetics of coal-methane system. The Gibbs thermodynamic potential is derived for this system as the function of methane density (persisting order parameter) and coal jointing (non-persisting order parameter). The authors put forward epy diffusion-filtration mechanism of mass transfer in porous material on two time scales and substantiate the concept of “quick” and “slow” methane. Based on the nonequilibrium thermodynamic potential, kinetic equations are derived for gas pressure and jointing in coal (bed). The first equation solution explains the physical effect of temporal gas pressure growth at the maximum of the external rock (bearing) pressure, the second equation enables generalization of the Griffiths failure criterion for a set of gas-filled joints. Mechanism of pre-outburst spalling of gas-saturated coal is analyzed.


Thermodynamic potential filtration diffusion gas-filled joint Griffiths criterion abutment pressure coal bed 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alekseev, A.D., Sinolitsky, V.V., Vasilenko, T.A., et al., Closed Pores of Fossil Coals, J. Min. Sci., 1992, vol. 28, no. 2, pp. 191–198.CrossRefGoogle Scholar
  2. 2.
    Alexeev, A.D., Vasilenko, T.A., and Ulyanova, E.V., Closed Porosity in Fossil Coals, Fuel, 1999, vol. 78, no. 6.Google Scholar
  3. 3.
    Sinolitsky, V.V., Serebrova, N.N., Vasilenko, T.A., et al., Estimation of Volume of Closed Pores in Fossil Coal, Resursy netraditsionnogo gazovogo syr’ya i problemy ego osvoeniya (Unconventional Gas Sources and Development Problems), Leningrad: VNIIGRI, 1990.Google Scholar
  4. 4.
    Gregg, S.J. and Sing, K.S.W., Adsorption, Surface Area, and Porosity, Academic Press, 1991.Google Scholar
  5. 5.
    Kovaleva, I.B., Methane and Coal Bond Energy in Beds, Cand. Tech. Sci. Dissertation, Moscow: IPKON RAN, 1979.Google Scholar
  6. 6.
    Ettinger, I.L. and Kovaleva, I.B., Swelling Stress and Free Energy in Gas-Coal System, Dokl. Akad. Nauk, 1979, vol. 244, no. 3.Google Scholar
  7. 7.
    Alekseev, A.D., Vasilenko, T.A., and Fel’dman, E.P., Estimate of Bond Energy between Methane Molecules and Coal Substance in Solid Solution, Gorn. Inform.-Analit. Byull., 2000, no. 7.Google Scholar
  8. 8.
    Yang, Sh., Ouyang, L., Phillips, J.M., and Ching, W.Y., Density-Functional Calculation of Methane Adsorption on Graphite, Physical Review, 2001, B, vol. 73.Google Scholar
  9. 9.
    Riehl, J.W. and Koch, K., NMR Relaxation of Adsorbed Methane on Graphite, Journal of Chemical Physics, 1972, vol. 57, no. 5.Google Scholar
  10. 10.
    Alekseev, A.D., Vasilenko, T.A., Gumennik, K.V., et al., Diffusion-Filtration Model of Methane Release from Coal Bed, Zh. Tekh. Fiz., 2007, vol. 77, no. 4.Google Scholar
  11. 11.
    Vasilenko, T.A., Mel’nik, T.N., and Fel’dman, E.P., Change in Gas Pressure in a Closed Volume with a Porous Solid, Fiz. Tekh. Vysok. Davl., 1999, vol. 9, no. 1.Google Scholar
  12. 12.
    Alekseev, A.D., Fel’dman. E.P., Vasilenko, T.A., et al., Methane Mass Transfer in Coal under Concurrent Filtration and Diffusion, Fiz. Tekh. Vysok. Davl., 2004, vol. 14, no. 3.Google Scholar
  13. 13.
    Fel’dman, E.P., Vasilenko, T.A., and Kalugina, N.A., Methane Release from Coal in a Closed Container: Role of Diffusion and Filtration, Fiz. Tekh. Vysok. Davl., 2006, vol. 16, no. 2.Google Scholar
  14. 14.
    Alekseev, A.D., Vasilenko, T.A., Zaidenvarg, V.E., and Sinolitsky, V.V., Simple Model of Gas-and-Coal Solid Solutions, Khim. Tverd. Tela, 1993, no. 1.Google Scholar
  15. 15.
    Alekseev, A.D., Zaidenvarg, V.E., Sinolitsky, V.V., and Ul’yanova, E.V., Radiofizika v ugol’noi promyshlennosti (Radiophysics in Coal Industry), Moscow: Nedra, 1992.Google Scholar
  16. 16.
    Fenelonov, V.B., Vvedenie v fizicheskuyu khimiyu formirovaniya supramolekulyarnoi struktury adsrobentov i katalizatorov (Introduction to Physical Chemistry of Formation of Supramolecular Structure in Adsorbents and Catalysts), Novosibirsk: SO RAN, 2002.Google Scholar
  17. 17.
    Khodot, V.V., Vnezapnye vybrosy uglya i gaza (Coal and Gas Outbursts), Moscow: Gorgostekhizdat, 1961.Google Scholar
  18. 18.
    Alekseev, A.D., Vasilenko, T.A., and Kirillov, A.K., Fractal Analysis of the Hierarchic Structure of Fossil Coal Surface, J. Min. Sci., 2008, vol. 44, no. 3, pp. 235–244.CrossRefGoogle Scholar
  19. 19.
    Vasilenko, T.A., Kirillova, A.K., and Troitsky, G.A., NMR Spectroscopic Analysis of Structure of Fossil Coal, Fiz. Tekh. Vysok. Davl., 2008, vol. 18, no. 2.Google Scholar
  20. 20.
    Kirillov, A.K., Small Angle X-Ray Scattering Approach to Analyze the Donetsk Basin Coal, Fiz.-Tekh. Probl. Gorn. Proizv., 2011, issue 14.Google Scholar
  21. 21.
    Konchits, A.A., Shanina, B.D., Valakh, M.Ya., et al., Local Structure, Paramagnetic Properties and Porosity of Natural Coals: Spectroscopic Studies, Journal of Applied Physics, 2012, vol. 112, no. 4.Google Scholar
  22. 22.
    Revva, V.N., Bachurin, L.L., Vasilenko, N.I., and Molodetsky, A.V., Method of Determining Characteristics of Rock Jointing, Vestn. Donetsk. Gorn. Inst., 2007, no. 2.Google Scholar
  23. 23.
    Aseeva, T.P., Alekseev, A.D., Viktorov, V.V., and Starikov, G.P., USSR Author’s Certificate no. 1285340, Buyll. Izobret., 1987, no. 26.Google Scholar
  24. 24.
    Alekseev, A.D., Fel’dman, E.P., and Kalugina, N.A., Thermodynamics of gas-Coal System and Nonuniform Gas Distribution in a Coal Bed, Zh. Tekh. Fiz., 2010, vol. 80, no. 12.Google Scholar
  25. 25.
    Landau, L.D and Lifshits, E.M., Teoreticheskaya fizika. Tom VII. Teoriya uprugosti (Theoretical Physics. Vol. VII. Theory of Elasticity), Moscow: Fizmatlit, 2003.Google Scholar
  26. 26.
    Alekseev, A.D. and Fel’dman, E.P., Equilibrium Distribution of Gas in Coal, Pis’ma Zh. Tekh. Fiz., 2008, vol. 34, no. 14.Google Scholar
  27. 27.
    Alekseev, A.D., Revva, V.N., and Ryazantsev, N.A., Razrushenie gornykh porod v ob’emnom pole szhimayushchikh napryazhenii (Rock Failure under Triaxial Compression), Kiev: Naukova dumka, 1989.Google Scholar
  28. 28.
    Starikov, G.P., Strel’tsov, V.A., and Yarembash, A.I., Strength Properties of Rocks under High Rock Pressure, Fiz. Tekh. Vysok. Davl., 1989, no. 32.Google Scholar
  29. 29.
    Alexeev, A.D., Revva, V.N., Bachurin, L.L., and Prokhorov, I.Y., The Effect of Stress State Factor of Sandstones under Dry Triaxial Loading, Int. J. Fracture, 2008, vol. 149, no. 1.Google Scholar
  30. 30.
    Starikov, G.P., Feature of Coal Deformation and Fracture under Triaxial Compression, Geotekhnologii na rubezhe XXI veka (Geotechnologies at the Edge of the 21st Century), Donetsk: DUNPGO, 2001.Google Scholar
  31. 31.
    Landau, L.D. and Lifshits, E.M., Statisticheskaya fizika. Ch. 2. Teoriya kondensirovannogo sostoyaniya (Statistical Physics. Part II: Theory of Condensed State), Moscow: Nauka, 1978.Google Scholar
  32. 32.
    Alekseev, A.D., Vasilenko, T.A., Kirillov, A.K., et al., NMR Methods in Studies of Methane Mobility Pores of Fossil Coal, Fiz. Tekh. Vysok. Davl., 2009, vol. 19, no. 4.Google Scholar
  33. 33.
    Skipochka, S.I. and Palamarchuk, T.A., Analysis of Microstructure of Coal Substance, Geotekhnicheskaya mekhanika (Geotechnical Mechanics), Dnepropetrovsk: IGTM NANU, issue 87.Google Scholar
  34. 34.
    Kovaleva, I.B. and Solov’eva, E.A., Use of Physicochemical Characteristics of Coal in Estimation of Coal Methane Recoverability, Gorn. Inform.-Analit. Byull., 2001, no. 5.Google Scholar
  35. 35.
    Alexeev, A.D., Vasilenko, T.A., and Kirillov, A.K., Temperature Dependence of Dynamic Parameters of Water in Fossil Coal Pores, Ukrainian Journal of Physics, 2012, vol. 57, no. 3.Google Scholar
  36. 36.
    Kuznetsov, S.V. and Krigman, R.N., Prirodnaya pronitsaemost’ ugol’nykh plastov i metody ee opredeleniya (Natural Permeability of Coal Beds and Methods of Its Estimation), Moscow: Nauka, 1978.Google Scholar
  37. 37.
    Leibenzon, L.S., Dvizhenie prirodnykh zhidkostei i gazov v prirodnoi srede (Flow of Natural Fluids and Gases in Natural Environment), Moscow-Leningrad: Goz. Izd. Tekh.-Teor. Lit., 1947.Google Scholar
  38. 38.
    Alexeev, A.D., Revva, V.N., and Molodetski, A.V., Stress State Effect on the Mechanical Behavior of Coals under True Triaxial Compressions, True Triaxial Testing of Rocks, Geomechanical Research Series, 2011, vol. 4.Google Scholar
  39. 39.
    Yakobi, O., Praktika upravelniya gornym davleniem (Practice of Ground Control), Moscow: Nedra, 1987.Google Scholar
  40. 40.
    Alekseev, A.D., Fel’dman, E.P., Starikov, G.P., et al., Forecasting of Time of Hazardous Methane Concentrations in Face Areas, Ugol’ Ukrainy, 2010, no. 7.Google Scholar
  41. 41.
    Shevelev, G.A., Dinamika vybrosov uglya, porody i gaza (Dynamics of Coal, Rock and Gas Outbursts), Kiev: Naukova dumka, 1989.Google Scholar
  42. 42.
    Alexeev, A.D. and Feldman, E.P., Non-Equilibrium Thermodynamics and Outburst Hazard of a Coal Bed, Ukrainian Journal of Physics, 2012, vol. 57, no. 6.Google Scholar
  43. 43.
    Fel’dman, E.P., Yurchenko, V.M., Strel’tsov, V.A., and Volodarskaya, E.V., Pre-Limit Growth of Fracture in Gas-Bearing Materials, Fiz. Tverd. Tela, 1992, vol. 34, no. 2.Google Scholar
  44. 44.
    Alekseev, A.D., Revva, V.N., Gladkaya, E.V., and Chistokletov, V.I., Effective Surface Energy of Rocks, Fiz.-Tekh. Probl. Gorn. Proizv., 2001, issue 4.Google Scholar
  45. 45.
    Barenblatt, G.I., Mathematical Theory of Equilibrium Cracks under Brittle Failure, Prikl. Mekh. Tekh. Fiz., 1961, no. 4.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • E. P. Fel’dman
    • 1
  • T. A. Vasilenko
    • 1
  • N. A. Kalugina
    • 1
  1. 1.Institute of Physics of Mining ProcessesNational Academy of Sciences of UkraineDonetskUkraine

Personalised recommendations