Russian Journal of Developmental Biology

, Volume 49, Issue 6, pp 339–355 | Cite as

Functional Dualism of Transposon Transcripts in Evolution of Eukaryotic Genomes

  • R. N. MustafinEmail author


The ability of transposons to unite genes separated by their insertions encoding common biological processes into regulatory networks contributed, simultaneously with the complication of eukaryotes, to their evolutionary success by forming new universal systems. By means of these systems, including DNA methylation, histone modifications, the relationship of telomeres with transposons, splicing regulation, and RNA interference, global distribution of transposons in the genomes was accompanied by the emergence of their structural innovations, dynamic regulatory sequences, and protein-coding genes. The mobile elements contributed to the evolution of protein-coding genes by their duplication, as well as exonization, and domestication of the transposons themselves. The resulting new genes contain transposon sequences involved in their management by means of regulatory networks and noncoding RNAs also originating from the mobile elements. A strategy wherein the translation of noncoding RNA genes contributed to the selection of the obtained polypeptides as functional cellular proteins was developed during evolution. At the same time, noncoding RNAs are also processed into molecules involved in the regulatory processes independently or as a part of the protein complexes. The duality of functions was inherent to all noncoding RNAs whose nonrandom decay/processing leads to the formation of molecules that have a regulatory effect on the transposons and protein-coding genes. A strategy wherein primary transposon transcripts interact with different systems of their processing (arisen to protect the hosts from transposons), forming functional RNA molecules translated into the peptides, was developed in the evolution of eukaryotes. The transposons are universal sources for these strategies; this explains their global distribution in eukaryotic genomes and domestication in the system of “double search” for targets for functional interaction of noncoding RNAs and processed products of their translation. In addition to splicing, primary transcripts of some protein-coding genes can also be processed in functional noncoding RNAs involved in common biological reactions with the gene protein product. This substantiates the associations of multifactorial diseases with the gene SNP since they can cause inactivation of RNA domains. It was suggested that functional dualism of the transposon transcripts could be an important condition of the emergence of life, while the mobile elements are one of fundamental properties of living.


protein-coding genes histones noncoding RNAs methylation peptides transposons 



  1. 1.
    Abrusan, G., Zhang, Y., and Szilagyi, A., Structure prediction and analysis of DNA transposon and LINE retrotransposons proteins, J. Biol. Chem., 2013, vol. 288, pp. 16127–16138.Google Scholar
  2. 2.
    Anderson, D.M., Anderson, K.M., Cang, C.L., et al., A micropeptide encoded by a putative long noncoding RNA regulates muscle performance, Cell, 2015, vol. 160, pp. 595–606.Google Scholar
  3. 3.
    Alzohairy, A.M., Gyulai, G., Jansen, R.K., and Bahieldin, A., Transposable elements domesticated and neofunctionalized by eukaryotic genomes, Plasmid, 2013, vol. 69, no. 1, pp. 1–15.Google Scholar
  4. 4.
    Arkhipova, I.R., Neutral theory, transposable elements, and eukaryotic genome evolution, Mol. Biol. Evol., 2018, vol. 35, no. 6, pp. 1332–1337.Google Scholar
  5. 5.
    Babakhani, S. and Oloomi, M., Transposons: the agents of antibiotic resistance in bacteria, J. Basic Microbiol., 2018. doi 10.1002/jobm.201800204Google Scholar
  6. 6.
    Badaeva, E.D. and Salina, E.A., Genome structure and chromosome analysis of the plants, Vavilovskii Zh. Genet. Sel., 2013, vol. 17, pp. 1017–1042.Google Scholar
  7. 7.
    Barry, G., Small RNAs and transposable elements are key components in the control of adaptive evolution in eukaryotes, BioEssays, 2018, vol. 40, no. 8, p. e1800070.Google Scholar
  8. 8.
    Belancio, V.P., Roy-Engel, A.M., and Deininger, P.L., All y’all need to know ‘bout retroelements in cancer, Semin. Cancer Biol., 2010, vol. 20, pp. 200–210.Google Scholar
  9. 9.
    Betts, H.C., Puttick, M.N., Clark, J.W., et al., Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin, Nat. Ecol. Evol., 2018. doi 10.1038/s41559-018-0644-xGoogle Scholar
  10. 10.
    Borchert, G.M., Holton, N.W., Williams, J.D., et al., Comprehensive analysis of microRNA genomic loci identifies pervasive repetitive-element origins, Mobile Genet. Elem., 2011, vol. 1, no. 1, pp. 8–17.Google Scholar
  11. 11.
    Cai, J., Zhao, R., Jiang, H., and Wang, W., De novo origination of a new protein-coding gene in Saccharomyces cerevisiae, Genetics, 2008, vol. 179, pp. 487–496.Google Scholar
  12. 12.
    Casacuberta, E., Drosophila: retrotransposons making up telomeres, Viruses, 2017, vol. 9, no. 7, p. 192.Google Scholar
  13. 13.
    Cerbin, S. and Jiang, N., Duplication of host genes by transposable elements, Curr. Opin. Genet. Dev., 2018, vol. 49, pp. 63–69.Google Scholar
  14. 14.
    Cho, J., Transposon-derived non-coding RNAs and their function in plants, Front. Plant. Sci., 2018, vol. 9, p. 600.Google Scholar
  15. 15.
    Chuong, E.B., Rumi, M.A., Soares, M.J., and Baker, J.C., Endogenous retroviruses function as species-specific enhancer elements in the placenta, Nat. Genet., 2013, vol. 45, no. 3, pp. 325–329.Google Scholar
  16. 16.
    Couzigou, J.M., Lauressergues, D., Becard, G., and Comier, J.P., miRNA-encoded peptides (miPEPs): a new tool to analyze the role of miRNAs in plant biology, RNA Biol., 2015, vol. 12, pp. 1178–1180.Google Scholar
  17. 17.
    Couzigou, J.M., Andre, O., Cuillotin, B., et al., Use of microRNA-encoded peptide miPEP172c to stimulate nodulation in soybean, New Phytol., 2016, vol. 211, pp. 379–381.Google Scholar
  18. 18.
    de Koning, A.P., Gu, W., Castoe, T.A., et al., Repetitive elements may comprise over two-thirds of the human genome, Plos Genet., 2011, vol. 7, no. 12, p. e1002384.Google Scholar
  19. 19.
    de Souza, F.S., Franchini, L.F., and Rubinstein, M., Exaptation of transposable elements into novel cis-regulatory elements: is the evidence always strong, Mol. Biol. Evol., 2013, vol. 30, no. 6, pp. 1239–1251.Google Scholar
  20. 20.
    Duan, C.G., Wang, X., Xie, S., et al., A pair of transposon-derived proteins function in a histone acetyltransferase complex for active DNA demethylation, Cell Res., 2017, vol. 27, no. 2, pp. 226–240.Google Scholar
  21. 21.
    Dupressoir, A., Lavialle, C., and Heidmann, T., From ancestral infectious retroviruses to bona fide cellular genes: role of the captured syncytins in placentation, Placenta, 2012, vol. 33, pp. 663–671.Google Scholar
  22. 22.
    Elkon, R., Ugalde, A.P., and Agami, R., Alternative cleavage and polyadenylation: extent, regulation and function, Nat. Rev. Genet., 2013, vol. 14, no. 7, pp. 496–506.Google Scholar
  23. 23.
    Ender, C., Krek, A., Friedlander, M.R., et al., Human snoRNA with microRNA-like functions, Mol. Cell, 2008, vol. 32, no. 4, pp. 519–528.Google Scholar
  24. 24.
    Feng, G., Leem, Y.E., and Levin, H.L., Transposon integration expression of stress response genes, Nucleic Acids Res., 2013, vol. 41, no. 2, pp. 775–789.Google Scholar
  25. 25.
    Feschotte, C., Transposable elements and the evolution of regulatory networks, Nat. Rev. Genet., 2008, vol. 9, no. 5, pp. 397–405.Google Scholar
  26. 26.
    Filee, J., Giant viruses and their mobile genetic elements: the molecular symbiosis hypothesis, Curr. Opin. Virol., 2018, vol. 33, pp. 81–88.Google Scholar
  27. 27.
    Garavis, M., Gonzalez, C., and Villasante, A., On the origin of the eukaryotic chromosome: the role of noncanonical DNA structures in telomere evolution, Genome Biol. Evol., 2013, vol. 5, pp. 1142–1150.Google Scholar
  28. 28.
    Gim, J., Ha, H., Ahn, K., et al., Genome-wide identification and classification of microRNAs derived from repetitive elements, Genomic Inf., 2014, vol. 12, no. 4, pp. 261–267.Google Scholar
  29. 29.
    Grandi, F.C., Rosser, J.M., Newkirk, S.J., et al., Retrotransposition creates sloping shores: a graded influence of hypomethylated CpG islands on flanking CpG sites, Genome Res., 2015, vol. 25, no. 8, pp. 1135–1146.Google Scholar
  30. 30.
    Goerner-Potvin, P. and Bourque, G., Computational tools to unmask transposable elements, Nat. Rev. Genet., 2018, vol. 19, no. 11, pp. 688–704.Google Scholar
  31. 31.
    Guo, L., Zhao, Y., Yang, S., et al., An integrated evolutionary analysis of miRNA-lncRNA in mammals, Mol. Biol. Rep., 2014, vol. 41, pp. 201–207.Google Scholar
  32. 32.
    Henikoff, S. and Smith, M.M., Histone variants and epigenetics, Cold Spring Harbor Perspect. Biol., 2015, vol. 7, no. 1, p. a019364. doi 10.1101/cshperspect.a019364Google Scholar
  33. 33.
    Honson, D.D. and Macfarlan, T.S., A lncRNA-like role for LINE1s in development, Dev. Cell, 2018, vol. 46, no. 2, pp. 132–134.Google Scholar
  34. 34.
    Huang, C.J., Lin, W.Y., Chang, C.M., and Choo, K.B., Transcription of the rat testis-specific Rtdpoz-T1 and -T2 retrogenes during embryo development: co-transcription and frequent exonisation of transposable element sequences, BMC Mol. Biol., 2009, vol. 10, pp. 74–88.Google Scholar
  35. 35.
    Ito, J., Suqimoto, R., Nakaoka, H., et al., Systematic identification and characterization of regulatory elements derived from human endogenous retroviruses, PLoS Genet., 2017, vol. 13, no. 7, p. e1006883.Google Scholar
  36. 36.
    Jacob, M.D., Audas, T.E., Mullineux, S.T., and Lee, S., Where no RNA polymerase has gone before: novel functional transcripts derived from the ribosomal Intergenic spacer, Nucleus, 2012, vol. 3, no. 4, pp. 315–319.Google Scholar
  37. 37.
    Jacques, P.E., Jeyakani, J., and Bourgue, G., The majority of primate-specific regulatory sequences are derived from transposable elements, PLoS Genet., 2013, vol. 9, no. 5, p. e1003504.Google Scholar
  38. 38.
    Jjingo, D., Conley, A.B., Wang, J., et al., Mammalian-wide interspersed repeat (MIR)-derived enhancers and the regulation of human gene expression, Mobile DNA, 2014, vol. 5, pp. 5–14.Google Scholar
  39. 39.
    Johnson, R. and Guigo, R., The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs, RNA, 2014, vol. 20, no. 7, pp. 959–976.Google Scholar
  40. 40.
    Joly-Lopez, Z. and Bureau, T.E., Exaptation of transposable element coding sequences, Curr. Opin. Genet. Dev., 2018, vol. 49, pp. 34–42.Google Scholar
  41. 41.
    Judd, J. and Feschotte, C., Gene expression: transposons take remote control, eLife, 2018, vol. 7, p. e40921.Google Scholar
  42. 42.
    Kapusta, A. and Feschotte, C., Volatile evolution of long noncoding RNA repertoires: mechanisms and biological implications, Trends Genet., 2014, vol. 30, no. 10, pp. 439–452.Google Scholar
  43. 43.
    Klein, S.J. and O’Neill, R.J., Transposable elements: genome innovation, chromosome diversity, and centromere conflict, Chromosome Res., 2018, vol. 26, nos. 1–2, pp. 5–23.Google Scholar
  44. 44.
    Kling E., Spaller T., Schiefner J. et al., Convergent evolution of integration site selection upstream of tRNA genes by yeast and amoeba retrotransposons, Nucleic Acids Res., 2018, vol. 46, pp. 7250–7260.Google Scholar
  45. 45.
    Kopera, H.C., Moldovan, J.B., Morrish, T.A., et al., Similarities between long interspersed element-1 (LINE-1) reverse transcriptase and telomerase, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, pp. 20345–20350.Google Scholar
  46. 46.
    Kubiak, M.R. and Makalowska, I., Protein-coding genes’ retrocopies and their functions, Viruses, 2017, vol. 9, p. 80.Google Scholar
  47. 47.
    Kumar, P., Anaya, J., Mudunuri, S.B., and Dutta, A., Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets, BMC Biol., 2014, vol. 12, p. 78.Google Scholar
  48. 48.
    Lauressergues, D., Couzigou, J.M., Clemente, H.S., et al., Primary transcripts of microRNAs encode regulatory peptides, Nature, 2015, vol. 520, no. 7545, pp. 90–93.Google Scholar
  49. 49.
    Leplae, R., Hebrant, A., Wodak, S.J., and Toussaint, A., ACLAME: a classification of mobile genetic elements, Nucleic Acids Res., 2004, vol. 32, pp. 45–49.Google Scholar
  50. 50.
    Levine, M.T., Jones, C.D., Kern, A.D., et al., Novel genes derived from noncoding DNA in Drosophila melanogaster are frequently X-linked and exhibit testis-biased expression, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, pp. 9935–9939.Google Scholar
  51. 51.
    Li, Y., Li, C., Xia, J., and Jin, Y., Domestication of transposable elements into microRNA genes in plants, PLoS One, 2011, vol. 6, p. e19212.Google Scholar
  52. 52.
    Li, Z., Ender, C., Meister, G., et al., Extensive terminal and asymmertric processing of small RNAs from rRNAs, snoRNAs, snRNAs, and tRNAs, Nucleic Acids Res., 2012, vol. 40, no. 14, pp. 6787–6799.Google Scholar
  53. 53.
    Long, Y., Wang, X., Youmans, D.T., and Cech, T.R., How do lncRNAs regulate transcription? Sci. Adv., 2017, vol. 3, no. 9, p. eaao2110.Google Scholar
  54. 54.
    Lorenzetti, A.P., de Antonio, G.Y., Paschoal, A.R., and Domingues, D.S., Plant TE-MIR DB: a database for transposable element-related microRNAs in plant genomes, Funct. Integr. Genomics, 2016, vol. 16, pp. 235–242.Google Scholar
  55. 55.
    Lowe, C.B. and Haussler, D., 29 mammalian genomes reveal novel exaptations of mobile elements for likely regulatory functions in the human genome, PLoS One, 2012, vol. 7, no. 8, p. e43128.Google Scholar
  56. 56.
    Lu, X., Sachs, F., Ramsay, L., et al., The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity, Nat. Struct. Mol. Biol., 2014, vol. 21, no. 4, pp. 423–425.Google Scholar
  57. 57.
    Lv, S., Pan, L., and Wang, G., Commentary: primary transcripts of microRNAs encode regulatory peptides, Front. Plant Sci., 2016, vol. 7, p. 1436.Google Scholar
  58. 58.
    Lv, J., Wang, L., Zhang, J., et al., Long noncoding RNA H19-derived miR-675 aggravates restenosis by targeting PTEN, Biochem. Biophys. Res. Commun., 2018, vol. 497, pp. 1154–1161.Google Scholar
  59. 59.
    Martinez, G., Choudury, S.G., and Slotkin, R.K., tRNA-derived small RNAs target transposable element transcripts, Nucleic Acids Res., 2017, vol. 45, no. 9, pp. 5142–5152.Google Scholar
  60. 60.
    Marzluff, W.F. and Koreski, K.P., Birth and death of histone mRNAs, Trends Genet., 2017, vol. 33, no. 10, pp. 745–759.Google Scholar
  61. 61.
    Mak, K.S., Burdach, J., Norton, L.J., et al., Repression of chimeric transcripts emanating from endogenous retrotransposons by a sequence-specific transcription factor, Genome Biol., 2014, vol. 15, no. 4, p. R58.Google Scholar
  62. 62.
    McGurk, M.P. and Barbash, D.A., Double insertion of transposable elements provides a substrate for the evolution of satellite DNA, Genome Res., 2018, vol. 28, no. 5, pp. 714–725.Google Scholar
  63. 63.
    Morrish, T.A., Garcia-Perez, J.L., Stamato, T.D., et al., Endonuclease-independent LINE-1 retrotransposition at mammalian telomeres, Natrure, 2007, vol. 446, no. 7132, pp. 208–212.Google Scholar
  64. 64.
    Mustafin, R.N. and Khusnutdinova, E.K., The role of transposons in epigenetic regulation of ontogenesis, Russ. J. Dev. Biol., 2018, vol. 49, no. 2, pp. 61–78.Google Scholar
  65. 65.
    Nelson, B.R., Makarewich, C.A., Anderson, D.M., et al., A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle, Science, 2016, vol. 351, pp. 271–275.Google Scholar
  66. 66.
    Novikova, O. and Belfort, M., Mobile group II introns as ancestral eukaryotic elements, Trends Genet., 2017, vol. 33, no. 11, pp. 773–783. doi 10.1016/j.tig2017.07.009Google Scholar
  67. 67.
    Patrushev, L.I. and Minkevich, I.G., The problem of genome size of eukaryotes, Usp. Biol. Khim., 2007, vol. 47, pp. 293–370.Google Scholar
  68. 68.
    Ravin, N.V. and Shestakov, S.V., Genome of prokaryotes, Vavilovskii Zh. Genet. Sel., 2013, vol. 17, no. 4-2, pp. 972–984.Google Scholar
  69. 69.
    Rearick, D., Prakash, A., McSweeny, A., et al., Critical association of ncRNA with introns, Nucleic Acids Res., 2011, vol. 39, no. 6, pp. 2357–2366.Google Scholar
  70. 70.
    Ricci, M., Peona, V., Guichard, E., et al., Transposable elements activity is positively related to rate of speciation in mammals, J. Mol. Evol., 2018, vol. 86, pp. 303–310.Google Scholar
  71. 71.
    Roberts, J.T., Cooper, E.A., and Favreau, C.J., Formation from transposable element insertions and noncoding RNA mutations, Mobile Genet. Elem., 2013, vol. 1, p. e27755.Google Scholar
  72. 72.
    Ruiz-Orera, J., Messeguer, X., Subirana, J.A., and Alba, M.M., Long non-coding RNAs as a source of new peptides, eLife, 2014, vol. 3, p. e03523. doi 10.7554/eLife.03523Google Scholar
  73. 73.
    Sadic, D., Schmid,t K., Groh, S., et al., Atrx promotes heterochromatin formation at retrotransposons, EMBO Rep., 2015, vol. 16, no. 7, pp. 836–850.Google Scholar
  74. 74.
    Sakai, H., Mizuno, H., Kawahara, Y., et al., Retrogenes in rice (Oryza sativa L. ssp. japonica) exhibit correlated expression with their source genes, Genome Biol. Evol., 2011, vol. 3, pp. 1357–1368.Google Scholar
  75. 75.
    Saze, H., Epigenetic regulation of intragenic transposable elements: a two-edged sword, J. Biochem., 2018, vol. 164, pp. 323–328.Google Scholar
  76. 76.
    Schrader, L. and Schmitz, J., The impact of transposable elements in adaptive evolution, Mol. Ecol., 2018. doi 10.111/mec.14794Google Scholar
  77. 77.
    Serrato-Capuchina, A. and Matute, D.R., The role of transposable elements in speciation, Genes (Basel), 2018, vol. 9, no. 5, p. E254.Google Scholar
  78. 78.
    Shestakov, S.V., The role of archaea in the origin of eukaryotes, Ekol. Genet., 2017, vol. 15, no. 4, pp. 52–59.Google Scholar
  79. 79.
    Sinzelle, L., Izsvak, Z., and Ivics, Z., Molecular domestivation of transposable elements: from detrimental parasites to useful host genes, Cell Mol. Life Sci., 2009, vol. 66, pp. 1073–1093.Google Scholar
  80. 80.
    Song, M.J. and Schaack, S., Evolutionary conflict between mobile DNA and host genomes, Am. Nat., 2018, vol. 192, no. 2, pp. 263–273.Google Scholar
  81. 81.
    Startek, M.P., Nogly, J., Gromadka, A., et al., Inferring transposons activity chronology by TRANScendence–TEs database and de-novo mining tool, BMC Bioinf., 2017, vol. 18, p. 422.Google Scholar
  82. 82.
    Taft, R.J., Glazov, E.A., Lassmann, T., et al., Small RNAs derived from snoRNAs, RNA, 2009, vol. 15, pp. 1233–1240.Google Scholar
  83. 83.
    Tan, S., Cardoso-Moreira, M., Shi, W., et al., LTR-mediated retroposition as a mechanism of RNA-based duplication in metazoans, Genome Res., 2016, vol. 26, no. 12, pp. 1663–1675.Google Scholar
  84. 84.
    Tajnik, M., Vigilante, A., Braun, S., et al., Inergenic Alu exonisation facilitates the evolution of tissue-specific transcript ends, Nucleic Acids Res., 2015, vol. 43, no. 21, pp. 10492–10505.Google Scholar
  85. 85.
    Toro, N. and Nisa-Martinez, R., Comprehensive phylogenetic analysis of bacterial reverse transcriptases, PLoS One, 2014, vol. 9, no. 11, p. e114083.Google Scholar
  86. 86.
    Toro, N., Martínez-Abarca, F., González-Delgado, A., and Mestre, M.R., On the origin and evolutionary relationships of the reverse transcriptases associated with type III CRISPR-Cas systems, Front. Mircrobiol., 2018, vol. 9, p. 1317.Google Scholar
  87. 87.
    Trizzino, M., Kapusta, A., and Brown, C.D., Transposable elements generate regulatory novelty in a tissue-specific fashion, BMC Genomics, 2018, vol. 19, no. 1, p. 468.Google Scholar
  88. 88.
    Venkatesh, T., Suresh, P.S., and Tsutsumi, R., tRFs: miRNAs in disguise, Gene, 2016, vol. 579, pp. 133–138.Google Scholar
  89. 89.
    Vinogradov, A.E., Base functions of genome structure of eukaryotes, Extended Abstract of Doctoral (Biol.) Dissertation, St. Petersburg, 2011.Google Scholar
  90. 90.
    Volff, J.N., Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes, BioEssays, 2006, vol. 28, pp. 913–922.Google Scholar
  91. 91.
    Wang, D., Su, Y., Wang, X., et al., Transposon-derived and satellite-derived repetitive sequences play distinct functional roles in mammalian intron size expansion, Evol. Bioinform. Online, 2012, vol. 8, pp. 301–319.Google Scholar
  92. 92.
    Wang, J., Vicente-Garcia, C., Seruqqia, D., et al., MIR retrotransposons sequences provide insulators to the human genome, Proc. Natl. Acad. Sci. U.S.A., 2015, vol. 112, pp. 4428–4437.Google Scholar
  93. 93.
    Wheeler, B.S., Small RNAs, big impact: small RNA pathways in transposon control and their effect on the host stress response, Chromosome Res., 2013, vol. 21, pp. 587–600.Google Scholar
  94. 94.
    Wicker, T., Sabot, F., Hua-Van, A., et al., A unified classification system for eukaryotic transposable elements, Nat. Rev. Genet., 2007, vol. 8, no. 12, pp. 973–982.Google Scholar
  95. 95.
    Xie, C., Zhang, Y.E., Chen, J.Y., et al., Hominoid-specific de novo protein-coding genes originating from long non-coding RNAs, PLoS Genet., 2012, vol. 8, p. e1002942.Google Scholar
  96. 96.
    Yenerall, P. and Zhou, L., Identifying the mechanisms of intron gain: progress and trends, Biol. Direct, 2012, vol. 7, p. 29. doi 10.1186/1745-6150-7-29Google Scholar
  97. 97.
    Yuan, Z., Sun, X., Liu, H., and Xie, J., MicroRNA genes derived from repetitive elements and expanded by segmental duplication events in mammalian genomes, PLoS One, 2011, vol. 6, p. e17666.Google Scholar
  98. 98.
    Zdobnov, E.M., Campillos, M., Harrington, E.D., et al., Protein coding potential of retroviruses and other transposable elements in vertebrate genomes, Nucleic Acids Res., 2005, vol. 33, pp. 946–954.Google Scholar
  99. 99.
    Zhang, J., Mujahid, H., Hou, Y., et al., Plant long ncRNAs: a new frontier for gene regulatory control, Am. J. Plant Sci., 2013, vol. 4, pp. 1038–1045.Google Scholar
  100. 100.
    Zeng, L., Pederson, S.M., Kortschak, R.D., and Adelson, D.L., Transposable elements and gene expression during the evolution of amniotes, Mobile DNA, 2018, vol. 9, p. 17.Google Scholar
  101. 101.
    Zhang, H.H., Zhou, Q.Z., Wang, P.L., et al., Unexpected invasion of miniature inverted-repeat transposable elements in viral genomes, Mobile DNA, 2018, vol. 9, p. 19.Google Scholar
  102. 102.
    Zhu, Z., Tan, S., Zhang, Y., and Zhang, Y.E., LINE-1-like retrotransposons contribute to RNA-based gene duplication in dicots, Sci. Rep., 2016, vol. 6, art. ID 24755.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Bashkir State Medical UniversityUfaRussia
  2. 2.Bashkir State UniversityUfaRussia

Personalised recommendations