Russian Journal of Developmental Biology

, Volume 47, Issue 6, pp 335–347 | Cite as

Efficiency of the induction of cytomixis in the microsporogenesis of dicotyledonous (N. tabacum L.) and monocotyledonous (H. distichum L.) plants by thermal stress

  • Yu. V. SidorchukEmail author
  • E. A. Kravets
  • S. R. Mursalimov
  • S. G. Plokhovskaya
  • I. I. Goryunova
  • A. I. Yemets
  • Y. B. Blume
  • E. V. Deineko
Developmental Biology of Plants


The efficiencies of the induction of cytomixis in microsporogenesis by thermal stress are compared in tobacco (N. tabacum L.) and barley (H. distichum L.) It has been shown that different thermal treatment schedules (budding tobacco plants at 50°C and air-dried barley grains at 48°C) produce similar results in the species: the frequency of cytomixis increases, and its maximum shifts to later stages of meiosis. However, the species show differences in response. The cytomixis frequency increase in tobacco is more pronounced, and its maximum shifts from the zygotene–pachytene stages of meiotic prophase I to prometaphase–metaphase I. Later in the meiosis, aberrations in chromosome structure and meiotic apparatus formation typical of cytomixis are noted, as well as cytomixis activation in tapetum cells. Thermal stress disturbs the integration of callose-bearing vesicles into the callose wall. Cold treatment at 7°C does not affect cytomixis frequency in tobacco microsporogenesis. Incubation of barley seeds at 48°C activates cytomixis in comparison to the control, shifts its maximum from the premeiotic interphase to zygotene, and changes the habit of cytomictic interactions from pairwise contacts to the formation of multicellular clusters. Thermal treatment induces cytomictic interactions within the tapetum and between microsporocytes and the tapetum. However, later meiotic phases show no adverse consequences of active cytomixis in barley. It is conjectured that heat stress affects callose metabolism and integration into the forming callose wall, thereby causing incomplete closure of cytomictic channels and favoring intercellular chromosome migration at advanced meiotic stages.


microsporogenesis cytomixis cytomictic channels plasmodesmata callose thermal stress Nicotiana tabacum L. Hordeum distichum L. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abiko, M., Akibayashi, K., Sakata, T., et al., High-temperature induction of male sterility during barley (Hordeum vulgare L.) anther development is mediated by transcriptional inhibition, Sex. Plant Reprod., 2005, vol. 18, pp. 91–100.CrossRefGoogle Scholar
  2. Barskaya, E.I. and Balina, N.V., On the role of callose in the anthers of plants, Fiziol. Rast., 1971, vol. 18, no. 4, pp. 716–721.Google Scholar
  3. Barton, D.A., Cantrill, L.C., Law, A.M.K., et al., Chilling to zero degrees disrupts pollen formation but not meiotic microtubule arrays in Triticum aestivum L., Plant, Cell Environ., 2014. doi 10.1111/pce.12358Google Scholar
  4. Bellucci, M., Roscini, C., and Mariani, A., Cytomixis in pollen mother cells of Medicago sativa L., J. Hered., 2003, vol. 94, pp. 512–516.CrossRefPubMedGoogle Scholar
  5. Bhat, T.A., Parveen, S., and Khan, A.H., MMS-induced cytomixis in pollen mother cells of broad bean (Vicia faba L.), Turk. J. Bot., 2006, vol. 30, pp. 273–279.Google Scholar
  6. Dagne, K., Meiosis in interspecific in Guizotia Cass. (Compositae), Hereditas, 1994, vol. 121, pp. 119–129.CrossRefGoogle Scholar
  7. Feng, X. and Dickinson, H.G., Tapetal cell fate, lineage and proliferation in the Arabidopsis anther, Development, 2010, vol. 137, pp. 2409–2416.CrossRefPubMedGoogle Scholar
  8. Fuentes, I., Stegemann, S., Golczyk, H., et al., Horizontal genome transfer as an asexual path to the formation of new species, Nature, 2014, vol. 511, no. 7508, pp. 232–235.CrossRefPubMedGoogle Scholar
  9. Genkel’, P.A., Fiziologiya zharo- i zasukhoustoichivosti rastenii (Physiology of Heat- and Drought-Resistant Plants), Moscow: Nauka, 1982.Google Scholar
  10. Giorno, F., Wolters-Arts, M., Mariani, C., et al., Ensuring reproduction at high temperatures: the heat stress response during anther and pollen, Development Plants, 2013, vol. 2, pp. 489–506.CrossRefPubMedGoogle Scholar
  11. Harsant, J., Pavlovic, L., Chiu, G., et al., High temperature stress and its effect on pollen development and morphological components of harvest index in the C3 model grass Brachypodium distachyon, J. Exp. Bot., 2013, vol. 64, no. 10, pp. 2971–2983.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hizume, M., Sato, S., and Tanaka, A., A highly reproducible method of nucleolus organizer regions staining in plants, Stain Technol., 1980, vol. 55, no. 2, pp. 87–90.PubMedGoogle Scholar
  13. Kalinka, A., Achrem, M., and Rogalska, S.M., Cytomixislike chromosomes/chromatin elimination from pollen mother cells (PMCs) in wheat-rye allopolyploids, Nucleus, 2010, vol. 53, pp. 69–83.CrossRefGoogle Scholar
  14. Kong, J., Li, Z., Tan, Y.P., et al., Different gene expression patterns of sucrose-starch metabolism during pollen maturation in cytoplasmic male-sterile and male-fertile lines of rice, Physiol. Plant., 2007, vol. 130, no. 1, pp. 136–147.CrossRefGoogle Scholar
  15. Kravets, E.A., Cellular and tissue mechanisms of recovery processes in Hordeum distichum L. under irradiation, Cytol. Genet., 2009, vol. 43, no. 1, pp. 9–17.CrossRefGoogle Scholar
  16. Kravets, E., The role of cell selection for pollen grain fertility after treatment of barley sprouts (Hordeum distichum L.) with UV-B irradiation, Acta Biologica Slovenica, 2011, vol. 54, pp. 23–32.Google Scholar
  17. Kravets, E.A., Nature, significance, and cytological consequences of cytomixis, Cytol. Genet., 2012, vol. 46, no. 3, pp. 188–195.CrossRefGoogle Scholar
  18. Kravets, E.A., Cytomixis and its role in the regulation of plant fertility, Russ. J. Dev. Biol., 2013, vol. 44, no. 3, pp. 113–128.CrossRefGoogle Scholar
  19. Ku, S.J., Yoon, H., Suh, H.S., et al., Male-sterility of thermosensitive genic male-sterile rice is associated with premature programmed cell death of the tapetum, Planta, 2003, vol. 217, pp. 559–565.CrossRefPubMedGoogle Scholar
  20. Kumar, G. and Tripathi, R., Influence of heat stress on genome of grass pea (Lathyrus sativus L.), J. Environ. Biol., 2009, vol. 30, no. 3, pp. 405–408.PubMedGoogle Scholar
  21. Kumar, G. and Yadav, R.S., Induction of cytomixis affects microsporogenesis in Sesamum indicum L. (Pedaliaceae), Russ. J. Dev. Biol., 2012, vol. 43, no. 4, pp. 209–214.CrossRefGoogle Scholar
  22. Kumar, G. and Srivastava, N., Induced cytomictic variations in pollen mother cells of Sesbania cannabina Poir, J. Centr. Eur. Agricult., 2013, vol. 14, no. 3, pp. 19–27.CrossRefGoogle Scholar
  23. Lalonde, S., Dwight, U., Beebe, H., and Saini, S., Early signs of disruption of wheat anther development associated with the induction of male sterility by meiotic stage water deficit, Sex. Plant Rep., 1997, vol. 10, no. 1, pp. 40–48.CrossRefGoogle Scholar
  24. Lattoo, S.K., Khan, S., Bamotra, S., et al., Cytomixis impairs meiosis and influences reproductive success in Chlorophytum comosum (Thunb) Jacq.: an additional strategy and possible implications, J. Biosci., 2006, vol. 31, pp. 629–637.CrossRefPubMedGoogle Scholar
  25. Lavania, U.C., Basu, S., Kushwaha, J.S., et al., Seasonal temperature variations influence tapetum mitosis patterns associated with reproductive fitness, Genome, 2014, vol. 57, pp. 1–5.CrossRefGoogle Scholar
  26. Li, X.F., Song, Z.Q., Feng, D.S., et al., Cytomixis in Thinopyrum intermedium, Thinopyrum ponticum and its hybrids with wheat, Cereal Res. Commun., 2009, vol. 37, no. 3, pp. 353–361.CrossRefGoogle Scholar
  27. Lone, F.A. and Lone, S., Cytomixis—a well known but less understood phenomenon in plants, Int. J. Rec. Sci. Res., 2013, vol. 4, no. 4, pp. 347–352.Google Scholar
  28. Lu, P., Chai, M., Yang, J., et al., The Arabidopsis callose defective microspore 1 gene is required for male fertility through regulating callose metabolism during microsporogenesis, Plant Physiol., 2014, vol. 164, pp. 1893–1904.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Malallah, G.A. and Attia, T.A., Cytomixis and its possible evolutionary role in a Kuwaiti population of Diplotaxis harra (Brassicaceae), Bot. J. Linn. Soc., 2003, vol. 143, pp. 169–175.CrossRefGoogle Scholar
  30. Mamun, E.A., Alfred, S., Cantrill, L.C., et al., Effects of chilling on male gametophyte development in rice, Cell Biol. Int., 2006, vol. 30, no. 1, pp. 583–591.CrossRefPubMedGoogle Scholar
  31. Mandal, A., Datta, A.K., Gupta, S., et al., Cytomixis a unique phenomenon in animal and plant, Protoplasma, 2013, vol. 250, pp. 985–996.CrossRefPubMedGoogle Scholar
  32. Mason, A.S., Nelson, M.N., Yan, G., et al., Production of viable male unreduced gametes in Brassica interspecific hybrids is genotype specific and stimulated by cold temperatures, BMC Plant Biol., 2011, vol. 11, p. 103. doi 10.1186/1471-2229-11-103CrossRefPubMedPubMedCentralGoogle Scholar
  33. Mursalimov, S.R. and Deineko, E.V., An ultrastructural study of cytomixis in tobacco pollen mother cells, Protoplasma, 2011, vol. 248, pp. 717–724.CrossRefPubMedGoogle Scholar
  34. Mursalimov, S. and Deineko, E., An ultrastructural study of microsporogenesis in tobacco line SR1, Biologia, 2012, vol. 67, pp. 369–376.CrossRefGoogle Scholar
  35. Mursalimov, S.R. and Deineko, E.V., How cytomixis can form unreduced gametes in tobacco, Plant Syst. Evol., 2015, vol. 301, pp. 1293–1297.CrossRefGoogle Scholar
  36. Mursalimov, S., Sidorchuk, Yu., and Deineko, E., New insights into cytomixis: specific cellular features and prevalence in higher plants, Planta, 2013, vol. 238, no. 3, pp. 415–423.CrossRefPubMedGoogle Scholar
  37. Mursalimov, S., Permyakova, N., Deineko, E., et al., Cytomixis doesn’t induce obvious changes in chromatin modifications and programmed cell death in tobacco male meiocytes, Front. Plant Sci., 2015a, vol. 6, p. 846. doi 10.3389/fpls.2015 b.00846CrossRefPubMedPubMedCentralGoogle Scholar
  38. Mursalimov, S.R., Sidorchuk, Y.V., Baiborodin, S.I., et al., Distribution of telomeres in the tobacco meiotic nuclei during cytomixis, Cell Biol. Int., 2015b, vol. 39, no. 4, pp. 491–495.CrossRefPubMedGoogle Scholar
  39. Negron-Ortiz, V., Chromosome numbers, nuclear DNA content, and polyploidy in Consolea (Cactaceae), an endemic cactus of the Caribbean islands, Am. J. Bot., 2007, vol. 94, pp. 1360–1370.CrossRefPubMedGoogle Scholar
  40. Nishikawa, S.I., Zinkl, G.M., Swanson, R.G., et al., Callose (β,1,3 glucan) is essential for Arabidopsis pollen wall patterning, but not tube growth, Plant Biol., 2005, vol. 22, no. 5, pp. 1345–1352.Google Scholar
  41. Oda, S., Kaneko, F., Yano, K., et al., Morphological and gene expression analysis under cool temperature conditions in rice anther development, Genes Genet. Syst., 2010, vol. 85, no. 2, pp. 107–120.CrossRefPubMedGoogle Scholar
  42. Oshino, T., Abiko, M., Saito, R., et al., Premature progression of anther early developmental programs accompanied by comprehensive alterations in transcription during high temperature injury in barley plants, Mol. Genet. Genom., 2007, vol. 278, pp. 31–42.CrossRefGoogle Scholar
  43. Pacini, E., Cell biology of anther and pollen development, in Genetic Control of Self-Incompatibility and Reproductive Development in Flowering Plants, Kluwer: Acad. Publ., 1994, pp. 83–96.Google Scholar
  44. Parish, R.W., Phan, H.A., Iacuone, S., et al., Tapetal development and abiotic stress: a centre of vulnerability, Functional Plant Biology, 2012, vol. 39, pp. 553–559.CrossRefGoogle Scholar
  45. Pecrix, Y., Rallo, G., Folzer, H., et al., Polyploidization mechanisms: temperature environment can induce diploid gamete formation in Rosa sp., J. Exp. Bot., 2011, vol. 62, no. 10, pp. 3587–3597.CrossRefPubMedGoogle Scholar
  46. Rai, P.K., Kumara, G., and Tripathib, A., Induced cytomictic diversity in maize (Zea mays L.) inbred, Cytol. Genet., 2010, vol. 44, no. 6, pp. 334–338.CrossRefGoogle Scholar
  47. Scott, R.J., Spielman, M., and Dickinson, H.G., Stamen structure and function, Plant Cell, 2004, vol. 16, pp. S46–S60.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Sidorchuk, Yu.V., Deineko, E.V., and Shumnyi, V.K., Characteristics of the cytomixis in the pollen mother cells of transgenic tobacco plants (Nicotiana tabacum L.) with mutant phenotype, Tsitologiia, 2007, vol. 49, no. 10, pp. 870–875.PubMedGoogle Scholar
  49. Singhal, V.K., Rana, P.K., Kumar, P., et al., Persistent occurrence of meiotic abnormalities in a new hexaploid cytotype of Thalictrum foetidum from Indian cold deserts, Biologia, 2011, vol. 66, pp. 458–464.CrossRefGoogle Scholar
  50. Smart, C.M., Scofield, S.R., Bevan, M.W., et al., Delayed leaf senescence in tobacco plants transformed with tmr, a gene for cytokinin production in Agrobacterium, Plant Cell, 1991, vol. 3, pp. 647–656.CrossRefPubMedPubMedCentralGoogle Scholar
  51. De Souza, A.M. and Pagliarini, M.S., Cytomixis in Brassica napus var. oleifera and Brassica campestris var. oleifera (Brassicaceae), Cytologia, 1997, vol. 62, pp. 25–29.CrossRefGoogle Scholar
  52. Srivastava, P. and Kumar, G., EMS-induced cytomictic variability in safflower (Carthamus tinctorius L.), Cytol. Genet., 2011, vol. 45, no. 4, pp. 44–49.CrossRefGoogle Scholar
  53. De Storme, N. and Geelen, D., The impact of environmental stress on male reproductive development in plants: biological processes and molecular mechanisms, Plant Cell Environ., 2014, vol. 37, pp. 1–18.CrossRefPubMedGoogle Scholar
  54. De Storme, N., Copenhaver, G.P., and Geelen, D., Production of diploid male gametes in Arabidopsis by coldinduced destabilization of postmeiotic radial microtubule arrays, Plant Physiol., 2012, vol. 160, pp. 1808–1826.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Wang, X.Y., Nie, X.W., Guo, G.Q., et al., Ultrastructural characterization of the process of cytoplasmic channel formation between pollen mother cells of David lily, Caryologia, 2002, vol. 55, pp. 161–168.CrossRefGoogle Scholar
  56. Wang, X.Y., Yu, C.H., Li, X., et al., Ultrastructural aspects and possible origin of cytomictic channels providing intercellular connection in vegetative tissues of anthers, Russ. J. Plant Physiol., 2004, vol. 51, no. 1, pp. 97–106.CrossRefGoogle Scholar
  57. Zhang, D. and Yang, L., Specification of tapetum and microsporocyte cells within the anther, Curr. Opin. Plant Biol., 2014, vol. 17, pp. 49–55.CrossRefPubMedGoogle Scholar
  58. Zhang, D., Luo, X., and Zhu, L., Cytological analysis and genetic control of rice anther development, J. Genet. Genom., 2011, vol. 38, no. 9, pp. 379–390.CrossRefGoogle Scholar
  59. Zhao, Da-Zh., Wang, G.-F., Speal, B., et al., The excess microsporocytes 1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther, Development, 2002, vol. 16, pp. 2021–2031.Google Scholar
  60. Zhou, S.Q., Viewing the difference between the diploid and the polyploid in the light of the upland cotton aneuploidy, Hereditas, 2003, vol. 138, pp. 65–72.CrossRefPubMedGoogle Scholar
  61. Zinn, K.E., Tunc-Ozdemir, M., and Harper, J.F., Temperature stress and plant sexual reproduction: uncovering the weakest links, J. Exp. Bot., 2010, vol. 61, no. 7, pp. 1959–1968.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • Yu. V. Sidorchuk
    • 1
    Email author
  • E. A. Kravets
    • 2
  • S. R. Mursalimov
    • 1
  • S. G. Plokhovskaya
    • 2
  • I. I. Goryunova
    • 2
  • A. I. Yemets
    • 2
  • Y. B. Blume
    • 2
  • E. V. Deineko
    • 1
  1. 1.Institute of Cytology and Genetics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Institute of Food Biotechnology and GenomicsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations