Advertisement

Russian Journal of Developmental Biology

, Volume 46, Issue 5, pp 263–275 | Cite as

Development of arbuscular mycorrhiza in highly responsive and mycotrophic host plant–black medick (Medicago lupulina L.)

  • A. P. Yurkov
  • L. M. Jacobi
  • N. E. Gapeeva
  • G. V. Stepanova
  • M. F. Shishova
Developmental Biology of Plants

Abstract

The main phases of arbuscular mycorrhiza (AM) development were analyzed in black medick (Medicago lupulina) with Glomus intraradices. Methods of light and transmission electron microscopy were used to investigate AM. The first mycorrhization was identified on the seventh day after sowing. M. lupulina with AM-fungus Glomus intraradices formed Arum type of AM. Roots of black medick at fruiting stage (on the 88th day) were characterized by the development of forceful mycelium. The thickness of mycelium was comparable with the vascular system of root central cylinder. The development of vesicules into intraradical spores was shown. Micelium, arbuscules, and vesicules developed in close vicinity to the division zone of root tip. This might be evidence of an active symbiotic interaction between partners. All stages of fungal development and breeding, including intraradical spores (in intercellular matrix of root cortex), were identified in the roots of black medick, which indicated an active utilization of host plant nutrient substrates by the mycosymbiont. Plant cell cytoplasm extension was identified around young arbuscular branches but not for intracellular hyphae. The presence of active symbiosis was confirmed by increased accumulation of phosphorus in M. lupulina root tissues under conditions of G. intraradices inoculation and low phosphorus level in the soil. Thus, black medick cultivar-population can be characterized as an ecologically obligate mycotrophic plant under conditions of low level of available phosphorus in the soil. Specific features of AM development in intensively mycotrophic black medick, starting from the stage of the first true leaf until host plant fruiting, were evaluated. The obtained plant-microbe system is a perspective model object for further ultracytological and molecular genetic studies of the mechanisms controlling arbuscular mycorrhiza symbiotic efficiency, including selection and investigation of new symbiotic plant mutants.

Keywords

arbuscular mycorrhiza Medicago lupulina black medick Glomus intraradices arbuscular mycorrhizal fungus symbiotic structures arbuscules vesicles spores light mycroscopy electron microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. van Aarle, I.M. and Olsson, P.A., Fungal lipid accumulation and development of mycelial structures by two arbuscular mycorrhizal fungi, Appl. Environ. Microbiol., 2003, vol. 69, pp. 6762–6767.PubMedCentralCrossRefPubMedGoogle Scholar
  2. van Aarle, I.M., Cavagnaro, T.R., Smith, S.E., et al., Metabolic activity of Glomus intraradices in Arumand Paris-type arbuscular mycorrhizal colonization, New Phytol., 2005, vol. 166, pp. 611–618.CrossRefPubMedGoogle Scholar
  3. Bago, B., Zipfel, W., Williams, R.M., et al., Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis, Plant Physiol., 2002, vol. 128, pp. 108–124.PubMedCentralCrossRefPubMedGoogle Scholar
  4. Borisov, A.Y., Danilova, T.N., Koroleva, T.A., et al., Pea (Pisum sativum L.) regulatory genes controlling development of nitrogen-fixing nodule and arbuscular mycorrhiza: fundamentals and application, Biologia, 2004, vol. 59, no. 13, pp. 137–144.Google Scholar
  5. Boyetchko, S.M. and Tewari, J.P., Root colonization of different hosts by the vesicular-arbuscular mycorrhizal fungus Glomus dimorphicum, Plant Soil, 1990, vol. 129, pp. 131–136.Google Scholar
  6. Brown, M.E. and King, F.J., Electron microscopy of mycorrhiza, Meth. Princip. Mycorrhizal Res., 1982, vol. 11, pp. 201–207.Google Scholar
  7. Burni, T. and Hussain, F., Diversity in arbuscular mycorrhizal morphology in some medicinal plants of family Lamiaceae, Pakistan J. Bot., 2011, vol. 43, pp. 1789–1792.Google Scholar
  8. Cao, M.Q., Wu, Q.S., and Zou, Y.N., An improved inkacetic acid technique for staining arbuscular mycorrhizas of citrus, Int. J. Agric. Biol., 2013, vol. 15, pp. 386–388.Google Scholar
  9. Carreón-Abud, Y., Soriano-Bello, E., and Martínez Trujillo, M., Role of arbuscular mycorrhizal fungi in the uptake of phosphorus by micropropagated blackberry (Rubus fruticosus var. brazos) plants, in First International Meeting on Microbial Phosphate Solubilization, Netherlands: Springer, 2007, pp. 161–165.CrossRefGoogle Scholar
  10. Dickson, S., The Arum–Paris continuum of mycorrhizal symbioses, New Phytol., 2004, vol. 163, pp. 187–200.CrossRefGoogle Scholar
  11. Duc, G., Trouvelot, A., Gianinazzi-Pearson, V., and Gianinazzi, S., First report of non-mycorrhizal plant mutants (Myc–) obtained in pea (Pisum sativum L.) and faba bean (Vicia faba L.), Plant Sci., 1989, vol. 60, pp. 215–222.CrossRefGoogle Scholar
  12. Ezawa, T., Hayatsu, M., and Saito, M., A new hypothesis on the strategy for acquisition of phosphorus in arbuscular mycorrhiza: up-regulation of secreted acid phosphatase gene in the host plant, Mol. Plant–Microbe Interact., 2005, vol. 18, pp. 1046–1053.CrossRefPubMedGoogle Scholar
  13. Finlay, R.D., Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium, J. Exp. Bot., 2008, vol. 59, pp. 1115–1126.CrossRefPubMedGoogle Scholar
  14. Fortin, J.A., Becard, G., Declerck, S., et al., Arbuscular mycorrhiza on root-organ cultures, Can. J. Bot., 2002, vol. 80, pp. 1–20.CrossRefGoogle Scholar
  15. Gallaud, J., Etude sur les mycorrhizes endotrophes, Rev. Gen. Bot., 1905, vol. 17, pp. 5–48.Google Scholar
  16. Gianinazzi, S., Schuepp, H., Haselwandter, K., et al., Mycorrhizal Technology in Agriculture: From Genes to Bioproducts, Basel: Birkhauser, 2002.CrossRefGoogle Scholar
  17. Hirsch, A.M. and Kapulnik, Y., Signal transduction pathways in mycorrhizal associations: comparisons with the Rhizobium–legume symbiosis, Fungal Genet. Biol., 1998, vol. 23, pp. 205–212.CrossRefPubMedGoogle Scholar
  18. Horvath, B., Yeun, L.H., Domonkos, A., et al., Medicago truncatula IPD3 is a member of the common symbiotic signaling pathway required for rhizobial and mycorrhizal symbioses, Mol. Plant–Microbe Interact., 2011, vol. 24, pp. 1345–1358.CrossRefPubMedGoogle Scholar
  19. Jacobi, L.M., Zubkova, L.A., Barmicheva, E.M., et al., Effect of mutations in the pea genes Sym33 and Sym40. II. Dynamics of arbuscule development and turnover, Mycorrhiza, 2003, vol. 13, pp. 9–16.CrossRefPubMedGoogle Scholar
  20. Janse, J.M., Les endophytes radicaux de quelques plantes javanaises, Ann. Jardin. Bot. Buitenzorg., 1897, vol. 14, pp. 53–201.Google Scholar
  21. Jiang, W., Gou, G., and Ding, Y., Influences of arbuscular mycorrhizal fungi on growth and mineral element absorption of chenglu hybrid bamboo seedlings, Pak. J. Bot., 2013, vol. 45, pp. 303–310.Google Scholar
  22. Karandashov, V. and Bucher, M., Symbiotic phosphate transport in arbuscular mycorrhizas, Trends Plant Sci., 2005, vol. 10, pp. 22–29.CrossRefPubMedGoogle Scholar
  23. Klingner, A., Bothe, H., and Wray, V., Identification of a yellow pigment formed in maize roots upon mycorrhizal colonization, Phytochemistry, 1995, vol. 38, pp. 53–55.CrossRefGoogle Scholar
  24. Koide, R.T. and Kabir, Z., Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate, New Phytol., 2000, vol. 148, pp. 511–517.CrossRefGoogle Scholar
  25. Koide, R.T. and Mosse, B., A history of research on arbuscular mycorrhiza, Mycorrhiza, 2004, vol. 14, pp. 145–163.CrossRefPubMedGoogle Scholar
  26. Larkan, N.J., Smith, S.E., and Barker, S.J., Position of the reduced mycorrhizal colonization (RMC) locus on the tomato genome map, Mycorrhiza, 2007, vol. 17, pp. 311–318.CrossRefPubMedGoogle Scholar
  27. Li, H., Smith, F.A., Dickson, S., et al., Plant growth depressions in arbuscular mycorrhizal symbioses: not just caused by carbon drain?, New Phytol., 2008, vol. 178, pp. 852–862.CrossRefPubMedGoogle Scholar
  28. Marsh, J.F. and Schultze, M., Analysis of arbuscular mycorrhizas using symbiosis-defective plant mutants, New Phytol., 2001, vol. 150, pp. 525–532.CrossRefGoogle Scholar
  29. Morandi, D., Signor, C., Gianinazzi-Pearson, V., and Duc, G., A Medicago truncatula mutant hyper-responsive to mycorrhiza and defective for nodulation, Mycorrhiza, 2009, vol. 19, pp. 435–441.CrossRefPubMedGoogle Scholar
  30. Morton, J.B., Taxonomy of VA mycorrhizal fungi: classification, nomenclature, and identification, Mycotaxon, 1988, vol. 27, pp. 267–324.Google Scholar
  31. Muthukumar, T. and Tamilselvi, V., Occurrence and morphology of endorhizal fungi in crop species, Tropic. Subtropic. Agroecosyst., 2010, vol. 12, pp. 593–604.Google Scholar
  32. Nägeli, C., Pilze im innern von Zellen, Linnaea, 1842, vol. 16, pp. 278–285.Google Scholar
  33. Nemec, S. and Vu, J.C.V., Effects of soil phosphorus and Glomus intraradices on growth, nonstructural carbohydrates and photosynthetic activity of Citrus aurantium, Plant Soil, 1990, vol. 128, pp. 257–263.CrossRefGoogle Scholar
  34. Paradi, I., Bratek, Z., and Lang, F., Influence of arbuscular mycorrhiza and phosphorus supply on polyamine content, growth and photosynthesis of Plantago lanceolata, Biol. Plant., 2003, vol. 46, pp. 563–569.CrossRefGoogle Scholar
  35. Pawlowska, T.E., Blaszkowski, J., and Rühling, A., The mycorrhizal status of plants colonizing a calamine spoil mound in southern Poland, Mycorrhiza, 1996, vol. 6, pp. 499–505.CrossRefGoogle Scholar
  36. Phillips, J.M. and Hayman, D.S., Improved procedures for clearing roots and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection, Transact. British Mycor. Soc., 1970, vol. 55, pp. 158–161.CrossRefGoogle Scholar
  37. Reynolds, E.S., The use of lead citrate at high ph as an electron-opaque stain in electron microscopy, J. Cell Biol., 1963, vol. 17, pp. 208–212.PubMedCentralCrossRefPubMedGoogle Scholar
  38. Schenck, N.C. and Pérrez, Y., Manual for the Identification of VA Mycorrhizal Fungi, 2nd ed., Gainesville: University of Florida, 1988.Google Scholar
  39. Schlicht, A., Beitrag zur Kenntniss der Verbreitung und Bedeutung der Mycorhizen, Landwirtschaftliche Jahrbucher, 1889, vol. 18, pp. 478–506.Google Scholar
  40. Schmid, E. and Oberwinkler, F., Light and electron microscopy of a distinctive VA mycorrhiza in mature sporophytes of Ophioglossum reticulatum, Mycol. Res., 1996, vol. 100, pp. 843–849.CrossRefGoogle Scholar
  41. Schüßler, A., Scwarzott, D., and Walker, C., A new fungal phylum, the Glomeromycota: phylogeny and evolution, Mycol. Res., 2001, vol. 105, pp. 1413–1421.CrossRefGoogle Scholar
  42. Selivanov, I.A., Structure of phycomycetous (vesicular–arbuscular) endomycorrhizae, Mikoriza Rastenii, 1975, vol. 142, pp. 60–68.Google Scholar
  43. Smith, S.E. and Read, D.J., Mikoriznyi simbioz (Mycorrhizal Symbiosis), Moscow: Tov. Nauch. Izd. KMK, 2012.Google Scholar
  44. Smith, S.E., Smith, F.A., and Jakobsen, I., Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth and total Puptake, New Phytol., 2004, vol. 162, pp. 511–524.CrossRefGoogle Scholar
  45. Tikhonovich, I.A. and Provorov, N.A., Simbiozy rastenii i mikroorganizmov: molekulyarnaya genetika agroekosistem budushchego (The Symbiosis of Plants and Microorganisms: Molecular Genetics of Agroecosystems of the Future), St. Petersburg: Izd. S.-Peterb. Univ., 2009.Google Scholar
  46. Trouvelot, A., Kough, J.L., and Gianinazzi-Pearson, V., Mesure du taux de mycorhization VA d’un systeme radiculaire. Recherche de methodes ayant une signification fonctionnelle, in Recherche de méthodes d’estimation ayant une signification fonctionnelle, Paris, 1st ESM Press, 1986, pp. 217–221.Google Scholar
  47. Tsyganov, V.E., Borisov, A.Y., Rozov, S.M., and Tikhonovich, I.A., New symbiotic mutants of pea obtained after mutagenesis of laboratory line SGE, Pisum Genet., 1994, vol. 26, pp. 36–37.Google Scholar
  48. Utobo, E.B., Ogbodo, E.N., and Nwogbaga, A.C., Techniques for extraction and quantification of arbuscular mycorrhizal fungi, LARCJI, 2011, vol. 2, pp. 68–78.Google Scholar
  49. Wang, B. and Qiu, Y.-L., Phylogenetic distribution and evolution of mycorrhizas in land plants, Mycorrhiza, 2006, vol. 16, pp. 299–363.CrossRefPubMedGoogle Scholar
  50. Wishniewska, M. and Golinowski, W., Immunolocalization of a-expansin protein (NtEXPA5) in tobacco roots in the presence of the arbuscular mycorrhizal fungus Glomus mosseae Nicol. & Gerd, Acta Biologica Cracoviensia Series Botanica, 2011, vol. 53, pp. 113–123.Google Scholar
  51. Yakobi, L.M., Kukalev, A.S., Ushakov, K.V., et al., Polymorphism of pea forms in the efficiency of symbiosis with the mycorrhizal fungus Glomus sp. under conditions of rhizobial inoculation, Sel’skokhoz. Biol., 2000, vol. 3, pp. 94–102.Google Scholar
  52. Yurkov, A.P. and Semenov, D.G., Noninvasive spectrophotometric study of the photosynthetic efficiency of arbuscular mycorrhizal of the black medick Medicago lupulina, Uch. Zap. RGGMU, 2008, no. 7, pp. 101–110.Google Scholar
  53. Yurkov, A.P. and Yakobi, L.M., Obtaining mutant black medick (Medicago lupulina) with changes in the development of arbuscular mycorrhiza, Estestv. Tekhn. Nauki, 2011, no. 6 (56), pp. 127–133.Google Scholar
  54. Yurkov, A.P., Yakobi, L.M., Stepanova, G.V., et al., Efficiency of inoculation of the black medick Medicago lupulina forms by the arbuscular mycorrhizal fungus Glomus intraradices and the intrapopulation variability of plants in terms of productivity and mycorrhiza formation, Sel’skokhoz. Biol., 2007, no. 5, pp. 67–74.Google Scholar
  55. Yurkov, A.P., Yakobi, L.M., Stepanova, G.V., et al., Effect of arbuscular mycorrhizal fungi on the growth and development of the black medick Medicago lupulina under the conditions of a moderate content of soil phosphorus available to plants, Estestv. Tekhn. Nauki, 2010, no. 6, pp. 117–123.Google Scholar
  56. Yurkov, A.P., Stepanova, G.V., Yakobi, L.M., et al., Productivity of spring and winter wheat when using the arbuscular mycorrhizal fungus Glomus intraradices under conditions of moisture shortage, Kormoproizvodstvo, 2012, no. 12, pp. 18–24.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • A. P. Yurkov
    • 1
    • 2
    • 3
  • L. M. Jacobi
    • 1
  • N. E. Gapeeva
    • 1
  • G. V. Stepanova
    • 4
  • M. F. Shishova
    • 5
  1. 1.Laboratory of Ecology of Symbiotic and Associative MicroorganismsAll-Russia Research Institute for Agricultural MicrobiologySt. PetersburgRussia
  2. 2.International Research Centre “Biotechnologies of the Third Millennium,”ITMO UniversitySt. PetersburgRussia
  3. 3.Chair of Ecology, Faculty of Ecology and Physics of NatureRussian State Hydrometeorological UniversitySt. PetersburgRussia
  4. 4.Laboratory of Breeding Symbiotic TechnologiesAll-Russia Williams Fodder Research InstituteMoscowRussia
  5. 5.Chair of Plant Physiology and Biochemistry, Biological FacultySt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations