Advertisement

Russian Journal of Developmental Biology

, Volume 45, Issue 2, pp 93–100 | Cite as

Embryo initiation from Pinus sibirica megagametophytes in in vitro culture

  • I. N. Tret’yakova
  • E. V. Voroshilova
Experimental Embryology

Abstract

Megagametophytes of Siberian pine were cultured on an in vitro culture medium 1/2 LV supplemented with growth regulators 2,4-dichlorophenoxyacetic acid (2,4-D) and benzylaminopurine (6-BAP) to form embryos. The competency of somatic cell of explants to embryogenesis manifested itself in an organized growth and polarity. A coenocyte consisting of long vacuolated cells was formed in the megagametophyte culture. Then, the migration of the nuclei to one of the poles of the cell, their division, and formation of embryoids was observed. The megagametophyte culture of the Siberian pine differed from the zygotic embryo culture by the absence of asymmetric division in the vacuolated cell.

Keywords

Pinus sibirica megagametophytes somatic embryogenesis embryos 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Von Aderkas, P. and Bonga, J.M., Formation of haploid embryoids in Larix deciduas: early embryogenesis, Amer. J. Bot., 1988, vol. 75, pp. 619–628.CrossRefGoogle Scholar
  2. Von Aderkas, P., Bonga, J., Klimaszewska, K., et al., Comparison of larch embryogeny in vivo and in vitro, in Woody Plant Biotechnology, New York: Plenum Press, 1991, pp. 139–155.CrossRefGoogle Scholar
  3. Von Arnold, S., Sabala, I., Bozhkov, P., Kyachok, J., and Filonova, L., Developmental pathways of somatic embryogenesis, Plant Cell Tissue Organ Culture, 2002, vol. 69, pp. 233–249.CrossRefGoogle Scholar
  4. Dudits, D., Gyorgyey, J., Borge, L., et al., Molecular biology of somatic embryogenesis, in In vitro Embryogenesis in Plants, Thorpe, T.A., Ed., Dordrecht: Kluwer Academic Publishers, 1995, pp. 267–308.CrossRefGoogle Scholar
  5. Gupta, P.K. and Durzan, D.J., Somatic polyembryogenesis from subcultured callus of immature sugar pine embryos, Bio/Technology, 1986, vol. 4, pp. 643–645.CrossRefGoogle Scholar
  6. Gupta, P.K. and Durzan, D.J., Biotechnology of somatic polyembryogenesis and plantlet regeneration in loblolly pine, Bio/Technology, 1987, vol. 5, pp. 147–153.CrossRefGoogle Scholar
  7. Gupta, P.K., Shaw, D., and Durzan, D.J., Loblolly pine; micropropagation, somatic embryogenesis and encapsulation, in Cell and Tissue Culture in Forestry, Bonga, J.M. and Durzan, D.J., Eds., 1986, vol. 3, pp. 101–108.Google Scholar
  8. Hakman, I., Fowke, L.C., and von Arnold, S., The development of somatic embryos in tissue cultures initiated from immature embryos of Picea abies (Norway spruce), Plant Sci., 1985, vol. 38, pp. 53–59.CrossRefGoogle Scholar
  9. Iroshnikov, A.M., Polymorphism of populations of Siberian cedar, in Izmenchivost’ drevesnykh rastenii Sibiri (Variability of Arboreal Plants in Siberia), Krasnoyarsk: Institut lesa SO RAN, 1974, pp. 73–103.Google Scholar
  10. Klimaszewska, K. and Cyr, D.R., Conifer somatic embryogenesis: I. Development, Dendrobiology, 2002, vol. 48, pp. 31–39.Google Scholar
  11. Lakin, G.F., Biometriya (Biometry), Moscow: Vysshaya shkola, 1973.Google Scholar
  12. Litvae, J.D., Verma, D.C., and Johmson, M.A., Influence of loblolly pine (Pinus taeda L.). Culture medium and its components on growth and somatic embryogenesis of the wild carrot (Daucus carota L.), Plant Cell Rep., 1985, vol. 4, pp. 325–328.CrossRefGoogle Scholar
  13. Lo, Schiavo F., Pitto, L., Giuliano, G., et al., DNA methylation of embryogenic carrot cell cultures and its variations as caused by maturation, differentiation, hormones and hypomethylation drugs, Theor. App. Genet., 1989, vol. 77, p. 325.CrossRefGoogle Scholar
  14. Lutova, L.A., Ezhova, T.A., Dodueva, I.E., et al., Genetika razvitiya rastenii (Plant Development Genetics), Leningrad: Nauka, 2011.Google Scholar
  15. Malabadi, R.B. and Van Staden, J., Somatic embryogenesis from vegetative shoot apices of mature trees of Pinus patula, Tree Physiol., 2005, vol. 25, pp. 11–16.PubMedCrossRefGoogle Scholar
  16. Minina, E.G. and Larionova, N.A., Morfogenez i proyavlenie pola u khvoinykh (Morphogenesis and Gender Expression in Conifers), Moscow: Nauka, 1979.Google Scholar
  17. Nagmani, R. and Bonga, J.M., Embryogenesis in subcultured callus of Larix deciduas, Can. J. Forest Res., 1985, vol. 15, pp. 1088–1091.CrossRefGoogle Scholar
  18. Park, Y.-S. and Bonga, J., Application of somatic embryogenesis in forest, in Management and Research IUFRO Working Party 2.09.02 Somatic Embryogenesis of Forest Trees Conference Advances in Somatic Embryogenesis of Trees and Its Application for the Future Forests and Plantations, Suwon, Republic of Korea, August 19–21, 2010, 2010, pp. 3–8.Google Scholar
  19. Park, Y.-S., Implementation of conifer somatic embryogenesis in clonal forestry: technical requirements and deployment considerations, Ann. Forest Sci., 2002, vol. 59, pp. 651–656.CrossRefGoogle Scholar
  20. Pausheva, Z.P., Praktikum po tsitologii rastenii (A Practical Course in Plant Cytology), Moscow: Kolos, 1980.Google Scholar
  21. Rokitskii, P.F., Biologicheskaya statistika (Biological Statistics), Minsk: Vysshaya shkola, 1973.Google Scholar
  22. Simola, L.K. and Santanen, A., Improvement of nutrient medium for growth and embryogenesis of megagametophyte and embryo callus lines of Picea abies, Physiol. Plants, 1990, vol. 80, pp. 27–35.CrossRefGoogle Scholar
  23. Stasolla, C. and Yeung, E., Recent advances in conifer somatic embryogenesis: improving somatic embryo quality, Plant Cell Tissue Organ Culture, 2003, vol. 74, pp. 15–35.CrossRefGoogle Scholar
  24. Tret’yakova, I.N., Embriologiya khvoinykh: fiziologicheskie aspekty (Embryology of Conifers: Physiological Aspects), Novosibirsk: Nauka, 1990.Google Scholar
  25. Tret’yakova, I.N., Embryogenic cell lines and somatic embryogenesis in an vitro culture of Siberian larch, Dokl. Biol. Sci., 2013, vol. 450, pp. 139–141.CrossRefGoogle Scholar
  26. Tret’yakova, I.N. and Barsukova, A.S., Somatic embryogenesis in in vitro culture of three larch species, Russ. J. Dev. Biol., 2012, vol. 43, no. 6, pp. 353–361.CrossRefGoogle Scholar
  27. Tret’yakova, I.N. and Izhboldina, M.S., Induction of somatic embryogenesis in Siberian cedar, Lesovedenie, 2009, vol. 5, pp. 41–47.Google Scholar
  28. Tret’yakova, I.N., Voroshilova, E.V., Shuvaev, D.N., and Pak, M.E., Prospects for micropropagation of conifers in in vitro culture via somatic embryogenesis, Khvoinye Boreal. Zony, 2012, vol. 28, nos. 1–2, pp. 180–186.Google Scholar
  29. Tret’yakova, I.N., Voroshilova, E.V., and Shuvaev, D.N., Callus formation and induction of somatic embryogenesis in embryos of hybrid seeds of Pinus sibirica, Russ. J. Plant Physiol., 2014, vol. 61, no. 2, pp. 297–303.Google Scholar
  30. Williams, E.G. and Maheswaran, G., Somatic embryogenesis: factors influencing coordinated behavior of cells as an embryogenic group, Ann. Bot., 1986, vol. 57, pp. 443–462.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  1. 1.Sukachev Institute of Forestry, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations