Russian Journal of Developmental Biology

, Volume 44, Issue 3, pp 139–143 | Cite as

Age-related changes in mast cells and eosinophils of human dermis

  • V. V. Petrov
  • O. V. Vasilyeva
  • N. K. Kornilova
  • A. G. Gunin
Mechanisms of Normal and Pathological Development of Tissues

Abstract

In this study, quantitative analysis of inflammatory effectors—mast cells and eosinophils—in derma of people of different ages is performed. The study shows that mast cell quantity in derma increases with age. Eosinophils are rarely observed in human dermis. There are no age-correlated changes of dermal eosinophils quantity observed. Age-correlated dermal fibroblast quantity is established. PCNA+ (proliferating cells nuclear antigen) fibroblast percentage demonstrating their proliferative pool also reliably decreases with age. Results of correlation analysis show that age-correlated increase in mast cells’ quantity is reliably (p < 0.05) correlated with decrease in total number and percentage of PCNA+ fibroblasts in derma. Consequently, age-correlated increase in dermal mast cell may be proposed to be one of the inflammatory and aging mechanisms. Mast cells, whose number increases with aging, may influence dermal fibroblast number with aging.

Keywords

dermis aging mast cells eosinophils fibroblasts proliferation PCNA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akuthota, P. and Weller, P.F., Eosinophils and disease pathogenesis, Semin. Hematol., 2012, vol. 49, pp. 113–119.PubMedCrossRefGoogle Scholar
  2. Amin, K., The role of mast cells in allergic inflammation, Respir. Med., 2012, vol. 106, pp. 9–14.PubMedCrossRefGoogle Scholar
  3. Cho, S., Shin, M.H., Kim, Y.K., et al., Effects of infrared radiation and heat on human skin aging in vivo, J. Investig. Dermatol. Symp. Proc., 2009, vol. 14, pp. 15–19.PubMedCrossRefGoogle Scholar
  4. Enerback, L. and Wingren, U., Histamine content of peritoneal and tissue mast cells of growing rats, Histochemistry, 1980, vol. 66, pp. 113–124.PubMedCrossRefGoogle Scholar
  5. Gilchrest, B.A., Stoff, J.S., and Soter, N.A., Chronologic aging alters the response to ultraviolet-induced inflammation in human skin, J. Invest. Dermatol., 1982, vol. 79, pp. 11–15.PubMedCrossRefGoogle Scholar
  6. Gilfillan, A.M., Austin, S.J., and Metcalfe, D.D., Mast cell biology: introduction and overview, Adv. Exp. Med. Biol., 2011, vol. 716, pp. 2–12.PubMedCrossRefGoogle Scholar
  7. Gunin, A.G., Bitter, A.D., Demakov, A.B., et al., Effects of peroxisome proliferator activated receptors α and Γ agonists on estradiol-induced proliferation and hyperplasia formation in the mouse uterus, J. Endocrinol., 2004, vol. 182, pp. 229–239.PubMedCrossRefGoogle Scholar
  8. Gunin, A.G., Kapitova, I.N., and Suslonova, N.V., Effects of histone deacetylase inhibitors on estradiol-induced proliferation and hyperplasia formation in the mouse uterus, J. Endocrinol., 2005, vol. 185, pp. 539–549.PubMedCrossRefGoogle Scholar
  9. Harvima, I.T. and Nilsson, G., Mast cells as regulators of skin inflammation and immunity, Acta. Derm. Venereol., 2011, vol. 91, pp. 644–650.PubMedGoogle Scholar
  10. Hwang, K.A., Yi, B.R., and Choi, K.C., Molecular mechanisms and in vivo mouse models of skin aging associated with dermal matrix alterations, Lab. Anim. Res., 2011, vol. 27, pp. 1–8.PubMedCrossRefGoogle Scholar
  11. Iddamalgoda, A., Le, Q.T., Ito, K., et al., Mast cell tryptase and photoaging: possible involvement in the degradation of extra cellular matrix and basement membrane proteins, Arch. Dermatol. Res., 2008, vol. 300, S. 1, pp. S69–S76.PubMedCrossRefGoogle Scholar
  12. Kenny, G.P. and Journeay, W.S., Human thermoregulation: separating thermal and nonthermal effects on heat loss, Front. Biosci., 2010, vol. 15, pp. 259–290.PubMedCrossRefGoogle Scholar
  13. Khavkin, J. and Ellis, D.A., Aging skin: histology, physiology, and pathology, Facial. Plast. Surg. Clin. North. Am., 2011, vol. 19, pp. 229–234.PubMedCrossRefGoogle Scholar
  14. Kim, M.S., Kim, Y.K., Lee, D.H., et al., Acute exposure of human skin to ultraviolet or infrared radiation or heat stimuli increases mast cell numbers and tryptase expression in human skin in vivo, Br. J. Dermatol., 2009, vol. 160, pp. 393–402.PubMedCrossRefGoogle Scholar
  15. Kita, H., Eosinophils: multifaceted biological properties and roles in health and disease, Immunol. Rev., 2011, vol. 242, pp. 161–177.PubMedCrossRefGoogle Scholar
  16. Kohl, E., Steinbauer, J., Landthaler, M., and Szeimies, R.M., Skin ageing, J. Eur. Acad. Dermatol. Venereol., 2011, vol. 25, pp. 873–884.PubMedCrossRefGoogle Scholar
  17. Leiferman, K.M., Norris, P.G., Murphy, G.M., et al., Evidence for eosinophil degranulation with deposition of granule major basic protein in solar urticaria, J. Am. Acad. Dermatol., 1989, vol. 21, pp. 75–80.PubMedCrossRefGoogle Scholar
  18. Levakov, A., Vuckovic, N., Dolai, M., et al., Age-related skin changes, Med. Pregl., 2012, vol. 65, pp. 191–195.PubMedCrossRefGoogle Scholar
  19. Montagna, W. and Carlisle, K., Structural changes in ageing skin, Br. J. Dermatol., 1990, vol. 122, S. 35, pp. 61–70.PubMedCrossRefGoogle Scholar
  20. Nakahata, T. and Toru, H., Cytokines regulate development of human mast cells from hematopoietic progenitors, Int. J. Hematol., 2002, vol. 75, pp. 350–356.PubMedCrossRefGoogle Scholar
  21. Naylor, E.C., Watson, R.E., and Sherratt, M.J., Molecular aspects of skin ageing, Maturitas, 2011, vol. 69, pp. 249–256.PubMedCrossRefGoogle Scholar
  22. Rijken, F. and Bruijnzeel, P.L., The pathogenesis of photoaging: the role of neutrophils and neutrophil-derived enzymes, J. Investig. Dermatol. Symp. Proc., 2009, vol. 14, pp. 67–72.PubMedCrossRefGoogle Scholar
  23. Rijken, F. and Bruijnzeel-Koomen, C.A., Photoaged skin: the role of neutrophils, preventive measures, and potential pharmacological targets, Clin. Pharmacol. Ther., 2011, vol. 89, pp. 120–124.PubMedCrossRefGoogle Scholar
  24. Steigleder, G.K. and Inderwisch, R., Eosinophilic leucocytes in the skin lesions of psoriasis and atopic dermatitis, Arch. Dermatol. Res., 1975, vol. 254, pp. 253–255.PubMedCrossRefGoogle Scholar
  25. Tsai, M., Grimbaldeston, M., and Galli, S.J., Mast cells and immunoregulation/immunomodulation, Adv. Exp. Med. Biol., 2011, vol. 716, pp. 186–211.PubMedCrossRefGoogle Scholar
  26. Vukmanovic-Stejic, M., Rustin, M.H., Nikolich-Zugich, J., and Akbar, A.N., Immune responses in the skin in old age, Curr. Opin. Immunol., 2011, vol. 23, pp. 525–531.PubMedCrossRefGoogle Scholar
  27. Wang, Y., Sun, Y., Yang, X.Y., et al., Mobilised bone marrowderived cells accelerate wound healing, Int. Wound. J., 2012. doi: 10.1111/j.1742-481X.2012.01007.xGoogle Scholar
  28. Wolf, J., Weinberger, B., Arnold, C.R., et al., The effect of chronological age on the inflammatory response of human fibroblasts, Exp. Gerontol., 2012. doi: 10.1016/ j.exger.2012.07.001Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • V. V. Petrov
    • 1
  • O. V. Vasilyeva
    • 1
  • N. K. Kornilova
    • 1
  • A. G. Gunin
    • 1
  1. 1.Chuvash State UniversityCheboksaryRussia

Personalised recommendations