Russian Journal of Developmental Biology

, Volume 43, Issue 6, pp 319–331 | Cite as

Neonatal injections of pharmacological agents and their remote genotype-dependent effects in mice and rats

  • I. I. Poletaeva
  • O. V. Perepelkina
  • O. S. Boyarshinova
  • I. G. Lil’p
  • N. V. Markina
  • T. B. Timoshenko
  • A. V. Revishchin


Experimental data were reviewed which demonstrated that the neonatal injection effects of certain biologically active drugs (ACTH4–10 fragment and its analogue Semax, piracetam, caffeine, levetiracetam, busperone, etc.) could be detected in adult animals as changes in physiological and behavioral reactions and in several morphological traits as well. Audiogenic seizures proneness, anxiety-fear and exploration behavior as well as pain sensitivity were analyzed. The remote effects discovered were either similar in direction to those applied to an adult organism, or opposite to it. Pharmacological treatments of such type presumably interfere the CNS development during early postnatal ontogeny and change the normal pattern of brain development. These modulatory influences could be due to changes in neurotransmitter system development and are presumably capable to induce CNS morphological deviations (numbers of neurons, adult neurogenesis).


ontogeny neonatal treatment genotype audiogenic epilepsy pain sensitivity anxiety exploration behavior mice rats 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrawal, A.K. and Shapiro, B.H., Neonatal Phenobarbital Imprints Overexpression of Cytochromes P450 with Associated Increase in Tumorigenesis and Reduced Life Span, FASEB J., 2005, vol. 19, no. 3, pp. 470–472.PubMedGoogle Scholar
  2. Alekseev, V.V., Koshelev, V.B., Kovalev, G.I., and Poletaeva, I.I., Effects of Neonatal Treatments on Pain and Audiogenic Sensitivity and Brain Content of Monoamines in Adult Rats, Russ. J. Dev. Biol., 2003a, vol. 34, no. 6, pp. 389–395.CrossRefGoogle Scholar
  3. Alekseev, V.V., Salonin, D.V., Fedotova, I.B., and Poletaeva, I.I., Nociceptive Thresholds in Adult Rats of Three Strains after Pain Stimulation in the Neonatal Period, Bull. Exp. Biol. Med., 2003b, vol. 135, no. 4, pp. 388–389.PubMedCrossRefGoogle Scholar
  4. D’Amato, F.R., Mazzacane, E., Capone, F., et al., Effects of Postnatal Manipulation on Nociception and Morphine Sensitivity in Adult Mice, Physiol. Behav., 2001, vol. 66, no. 4, pp. 627–637.Google Scholar
  5. Ammassari-Teule, M., Fagioli, S., Maritati, M., et al., Chronic Administration of Phosphatidylserine during Ontogeny Enhances Subject-Environment Interactions and Radial Maze Performance in C57BL/6 Mice, Physiol. Behav., 1990, vol. 47, no. 4, pp. 755–760.PubMedCrossRefGoogle Scholar
  6. Anand, K.J. and Bhutta, A.T., Vulnerability of the Developing Brain. Neuronal Mechanisms, Clin. Perinatol., 2002, vol. 29, no. 3, pp. 357–372.PubMedCrossRefGoogle Scholar
  7. Blandova, Z.K., Dushkin, V.A., Malashenko, A.M., et al., Linii laboratornykh zhivotnykh dlya mediko-biologicheskikh issledovanii (Lines of Laboratory Animals for Biomedical Research), Moscow: Nauka, 1983.Google Scholar
  8. Boyarshinova, O.S., Shilova, O.B., Markina, N.V., et al., Genotype-Dependent Changes in Pain Thresholds in Adult Mice after Neonatal Treatment, Bull. Exp. Biol. Med., 2004a, vol. 137, no. 6, pp. 532–535.PubMedCrossRefGoogle Scholar
  9. Boyarshinova, O.S., Revishchin, A.V., Poletaeva, I.I., and Korochkin, L.I., Neonatal Administration of ACTH4-10 and Its Analog Semax to Young Laboratory Mice Modulates the Number of Catecholaminergic Neurons in Adult Animal Diencephalon, Dokl. Biol. Sci., 2004b, vol. 396, pp. 181–183.PubMedCrossRefGoogle Scholar
  10. Boyarshinova, O.S., Perepelkina, O.V., Markina, N.V., et al., Audiogenic Epilepsy in Young Mice of Different Strains after Neonatal Semax Treatment, Bull. Exp. Biol. Med., 2008, vol. 145, no. 7, pp. 94–97.Google Scholar
  11. Bozdagi, O., Rich, E., Tronel, S., Sadahiro, M., et al., The Neurotrophin-Inducible Gene Vgf Regulates Hippocampal Function and Behavior through a BDNF-Dependent Mechanism, J. Neurosci., 2008, vol. 28, no. 39, pp. 9857–9869.PubMedCrossRefGoogle Scholar
  12. Brown, R.W., Perna, M.K., Schaefer, T.L., et al., The Effects of Adulthood Nicotine Treatment on D2-Mediated Behavior and Neurotrophins of Rats Neonatally Treated with Quinpirole, Synapse, 2006, vol. 59, no. 5, pp. 253–259.PubMedCrossRefGoogle Scholar
  13. Chen, C.S., Gates, G.R., and Reynoldson, J.A., Effect of Morphine and Naloxone on Priming-Induced Audiogenic Seizures in BALB/c Mice, Br. J. Pharmac., 1976, vol. 58, pp. 517–520.CrossRefGoogle Scholar
  14. Cohen, M.A., Skelton, M.R., Schaefer, T.L., et al., Learning and Memory after Neonatal Exposure to 3,4-Methylenedioxymethamphetamine (Ecstasy) in Rats: Interaction with Exposure in Adulthood, Synapse, 2005, vol. 57, pp. 148–159.PubMedCrossRefGoogle Scholar
  15. Costei, A.M., Kozer, E., Ho, T., et al., Perinatal Outcome Following Third Trimester Exposure to Paroxetine, Arch. Pediatr. Adolesc. Med., 2002, vol. 156, pp. 1129–1132.PubMedCrossRefGoogle Scholar
  16. Counotte, D.S., Spijker, S., Van de Burgwal, L.H., et al., Long-Lasting Cognitive Deficits Resulting from Adolescent Nicotine Exposure in Rats, Neuropsychopharmacology, 2009, vol. 34, pp. 299–306.PubMedCrossRefGoogle Scholar
  17. Crews, D., Epigenetics and Its Implications for Behavioral Neuroendocrinology, Front. Neuroendocrinol., 2008, vol. 29, no. 3, pp. 344–357.PubMedCrossRefGoogle Scholar
  18. Dall’Igna, O.P., Da Silva, A.L., Dietrich, M.O., et al., Chronic Treatment with Caffeine Blunts the Hyperlocomotor but not Cognitive Effects of the N-Methyl-D-Aspartatereceptor Antagonist MK-801 in Mice, Psychopharmacology, 2003, vol. 166, no. 3, pp. 258–263.PubMedGoogle Scholar
  19. Dassesse, D., Vanderwinden, J.M., Goldberg, I., et al., Caffeine-Mediated Induction of C-Fos, Zif-268 and Arc Expression through A1 Receptors in the Striatum: Different Interactions with the Dopaminergic System, Eur. J. Neurosci., 1999, vol. 11, no. 9, pp. 3101–3114.PubMedCrossRefGoogle Scholar
  20. Dubynin, V.A., Malinovskaya, I.V., Ivleva, Yu.A., et al., Delayed Behavioral Effects of Beta-Casomorphin-7 Depend on Age and Gender of Albino Rat Pups, Bull. Exp. Biol. Med., 2001, vol. 130, no. 11, pp. 488–492.Google Scholar
  21. Faingold, C.L., Neuronal Networks in the Genetically Epilepsy-Prone Rat, Adv. Neurol., 1999, vol. 79, pp. 311–321.PubMedGoogle Scholar
  22. File, S.E. and Tucker, J.C., Prenatal Treatment with Clomipramine Has an Anxiolytic Profile in the Adolescent Rat, Physiol. Behav., 1983, vol. 31, no. 1, pp. 57–61.PubMedCrossRefGoogle Scholar
  23. Fitzgerald, M. and Beggs, S., The Neurobiology of Pain: Developmental Aspects, Neuroscicence, 2001, vol. 7, no. 3, pp. 246–257.Google Scholar
  24. Gao, H.-R., Shi, T.-F., Yang, C.-X., et al., The Effect of Dopamine on Pain-Related Neurons in the Parafascicular Nucleus of Rats, J. Neur. Transmis., 2010, vol. 117, no. 5, pp. 585–591.CrossRefGoogle Scholar
  25. Grunau, R., Early Pain in Preterm Infants. A Model of Long-Term Effects, Clin. Perinatol., 2002, vol. 29, no. 3, pp. 373–394.PubMedCrossRefGoogle Scholar
  26. Guillet, R., Neonatal Caffeine Exposure Alters Seizure Susceptibility in Rats in an Age-Related Manner, Brain Res. Dev. Brain Res., 1995, vol. 89, no. 1, pp. 124–128.PubMedCrossRefGoogle Scholar
  27. Henry, K.R., Audiogenic Seizure Susceptibility Induced in C57B1/6J Mice by Prior Auditory Exposure, Science, 1967, vol. 158, pp. 938–940.PubMedCrossRefGoogle Scholar
  28. Kaindl, A.M. and Ikonomidou, C., Glutamate Antagonists Are Neurotoxins for the Developing Brain, Neurotox. Res., 2007, vol. 11, nos. 3–4, pp. 203–218.PubMedCrossRefGoogle Scholar
  29. Koch, S.C., Fitzgerald, M., and Hathway, G.J., Midazolam Potentiates Nociceptive Behavior, Sensitizes Cutaneous Reflexes, and Is Devoid of Sedative Action in Neonatal Rats, Anesthesia, 2008, vol. 108, no. 1, pp. 122–129.CrossRefGoogle Scholar
  30. Korogodina, Yu.V. and S’yakste, T.G., 101/H Line Mice, a Possible Model of Human Chromosomal Instability Diseases, Genetika, 1981, vol. 17, no. 5, pp. 915–919.PubMedGoogle Scholar
  31. Kuznetsova, G.D., Petrova, E.V., Coenen, A.M., et al., Generalized Absence Epilepsy and Catalepsy in Rats, Physiol. Behav., 1996, vol. 60, no. 4, pp. 1165–1169.PubMedCrossRefGoogle Scholar
  32. Liang, J., Wang, X., Lu, Y., et al., Effects of Antidepressants on the Exploration, Spontaneous Motor Activity and Isolation-Induced Aggressiveness in Mice, Beijing: Da Xue Xue Bao, 2003, vol. 35, no. 1, pp. 54–60.Google Scholar
  33. Loepke, A.W., Istaphanous, G.K., McAuliffe, J.J., et al., The Effects of Neonatal Isoflurane Exposure in Mice on Brain Cell Viability, Adult Behavior, Learning, and Memory, Intern. Anesth. Res. Soc., 2009, vol. 108, no. 1, pp. 90–104.Google Scholar
  34. Maguire, J. and Mody, I., GABAAR Plasticity during Pregnancy: Relevance to Postpartum Depression, Neuron, 2008, vol. 59, pp. 207–213.PubMedCrossRefGoogle Scholar
  35. Maple, A.M., Perna, M.K., Joshua, P., et al., Ontogenetic Quinpirole Treatment Produces Long-Lasting Decreases in the Expression of Rgs9, but Increases Rgs17 in the Striatum, Nucleus Accumbens and Frontal Cortex, Eur. J. Neurosci., 2007, vol. 26, no. 9, pp. 2532–2538.PubMedCrossRefGoogle Scholar
  36. Markina, N.V., Shilova, O.B., Perepelkina, O.V., et al., Neonatal Administration of Buspiron Causes Changes in Intermale Aggression of Adult Mice, Dokl. Akad. Nauk, 2004, vol. 396, no. 2, pp. 1–3.Google Scholar
  37. Markina, N.V., Perepelkina, O.V., and Poletaeva, I.I., The Remote Effects of Neonatal Injections of Caffeine and Piracetam on Audiogenic Seizure Susceptibility in Mice of Three Genotypes, Zh. Vysch. Nerv. Deyat. im. I.P. Pavlova, 2006, vol. 58, no. 3, pp. 424–431.Google Scholar
  38. Markina, N.V., Perepelkina, O.V., Bizikoeva, F.Z., et al., Neonatal Buspirone Modulates the Intermale Aggression in Adult Mice, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2006, vol. 56, no. 4, pp. 491–498.Google Scholar
  39. Maxson, S.C. and Sze, P.Y., Glucocorticoids and Development of Audiogenic Seizure Susceptibility in DBA/1Bg Mice, Behav. Genet., 1977, vol. 7, pp. 323–326.PubMedCrossRefGoogle Scholar
  40. McGivern, R.F., Rose, G., Berka, C., et al., Neonatal Exposure to a High Level of ACTH4-10 Impairs Adult Learning Performance, Pharmacol. Biochem. Behav., 1987, vol. 27, no. 1, pp. 133–142.PubMedCrossRefGoogle Scholar
  41. Mehta, M., Ahmed, Z., Fernando, S.S., et al., Plasticity of 5-HT 1A Receptor-Mediated Signaling during Early Postnatal Brain Development, J. Neurochem., 2007, vol. 101, no. 4, pp. 918–928.PubMedCrossRefGoogle Scholar
  42. Middaugh, L.D., Boggan, W.O., and Shepherd, C.L., Prenatal Ethanol Effects and Dopamine Systems of Adult C57 Male Mice, Neurotoxicol. Teratol., 1994, vol. 16, no. 2, pp. 207–212.PubMedCrossRefGoogle Scholar
  43. Midzyanovskaya, I.S., Kuznetsova, G.D., Vinogradova, L.V., et al., Mixed Forms of Epilepsy in a Subpopulation of WAG/Rij Rats, Epilepsy Behav., 2004, vol. 5, no. 5, pp. 655–661.PubMedCrossRefGoogle Scholar
  44. Mooney, S.M. and Miller, M.W., Role of Neurotrophins on Postnatal Neurogenesis in the Thalamus: Prenatal Exposure to Ethanol, Neuroscience, 2011, Jan 25 [Epub ahead of print].Google Scholar
  45. Morford, L.L., Inman-Wood, S.L., Gudelsky, G.A., et al., Impaired Spatial and Sequential Learning in Rats Treated Neonatally with D-Fenfuramine, Eur. J. Neurosci., 2002, vol. 16, pp. 491–500.PubMedCrossRefGoogle Scholar
  46. Mothes, H.K., Opitz, B., Werner, R., et al., Effects of Prenatal Ethanol Exposure and Early Experience on Home-Cage and Open-Field Activity in Mice, Neurotoxicol. Teratol., 1996, vol. 18, no. 1, pp. 59–65.PubMedCrossRefGoogle Scholar
  47. Murray, P.D., Masri, R., and Keller, A., Abnormal Anterior Pretectal Nucleus Activity Contributes to Central Pain Syndrome, J. Neurophysiol., 2009, vol. 102, pp. 181–191.PubMedCrossRefGoogle Scholar
  48. Noorlander, C.W., Ververs, F.F.T., Nikkels, P.G.J., et al., Modulation of Serotonin Transporter Function during Fetal Development Causes Dilated Heart Cardiomyopathy and Lifelong Behavioral Abnormalities, PLoS ONE, 2008, vol. 3, no. 7, p. e2782.PubMedCrossRefGoogle Scholar
  49. Peters, J.W., Schouw, R., Anand, K.J., et al., Does Neonatal Surgery Lead to Increased Pain Sensitivity in Later Childhood?, Pain, 2005, vol. 114, no. 3, pp. 444–454.PubMedCrossRefGoogle Scholar
  50. Peunova, N., Scheinker, V., Cline, H., et al., Nitric Oxide Is an Essential Negative Regulator of Cell Proliferation in Xenopus Brain, J. Neurosci., 2001, vol. 21, no. 22, pp. 8809–8818.PubMedGoogle Scholar
  51. Pick, C.G., Cooperman, M., Trombka, D., et al., Hippocampal Cholinergic Alterations and Related Behavioral Deficits after Early Exposure to Ethanol, Int. J. Dev. Neurosci., 1993, vol. 11, no. 3, pp. 379–385.PubMedCrossRefGoogle Scholar
  52. Poletaeva, I.I., Lil’p, I.G., Irisova, O.A., et al., An Unusual Type of Locomotion in Mice of Line 101/HY, Genetika, 1992, vol. 28, no. 12, pp. 147–149.PubMedGoogle Scholar
  53. Poletaeva, I.I., Shilova, O.B., and Korochkin, L.I., The Effect of ACTH4-10 on the Behavior of Several Inbred Strains of Mice, Russ. J. Dev. Biol., 1996a, vol. 27, no. 4, pp. 294–299.Google Scholar
  54. Poletaeva, I.I., Lil’p, I.G., Bizikoeva, F.Z., et al., Audiogenic Epilepsy in Mouse Strain 101/HY at Different Stages of Postnatal Ontogenesis, Russ. J. Dev. Biol., 1996b, vol. 27, no. 3, pp. 188–196.Google Scholar
  55. Porter, F.L., Grunau, R.E., and Anand, K.J., Long-Term Effects of Pain in Infants, J. Dev. Behav. Pediatr., 1999, vol. 20, no. 4, pp. 253–261.PubMedCrossRefGoogle Scholar
  56. Puchalski, M. and Hummel, P., The Reality of Neonatal Pain, Adv. Neon. Care, 2002, vol. 5, pp. 233–244.Google Scholar
  57. Rasakham, K. and Liu-Chen, L.Y., Sex Differences in Kappa Opioid Pharmacology, Life Sci., 2011, vol. 88, nos. 1–2, pp. 2–16.PubMedCrossRefGoogle Scholar
  58. Sakamoto, T., Mishina, M., and Niki, H., Mutation of NMDA Receptor Subunit Epsilon 1: Effects on Audiogenic-Like Seizures Induced by Electrical Stimulation of the Inferior Colliculus in Mice, Mol. Brain Res., 2002, vol. 102, no. 1–2, pp. 113–117.PubMedCrossRefGoogle Scholar
  59. Salonin, D.V., Perepelkina, O.V., Markina, N.V., et al., The Influence of Neonatal Ketamine Injection on Pain Sensitivity and Audiogenic Seizures in Adult Rats, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2004, vol. 54, no. 2, pp. 277–282.Google Scholar
  60. Sánchez, C., Arnt, J., Hyttel, J., et al., The Role of Serotonergic Mechanisms in Inhibition of Isolation-Induced Aggression in Male Mice, Psychopharmacology (Berl.), 1993, vol. 110, nos. 1–2, pp. 53–59.CrossRefGoogle Scholar
  61. Savina, T.A., Fedotova, I.B., Semiokhina, A.F., et al., Remote Effects of Early Postnatal Pituitary Hormone Melatonin Injection on Audiogenic Seizures in Krushinsky-Molodkina Rats, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2005, vol. 55, no. 1, pp. 117–125.Google Scholar
  62. Schroeder, H., Humbert, A.-C., Desor, D., et al., Long-Term Consequences of Neonatal Exposure to Diazepam on Cerebral Glucose Utilization, Learning, Memory and Anxiety, Brain Res., 1997, vol. 766, nos. 1–2, pp. 142–152.PubMedCrossRefGoogle Scholar
  63. Semiokhina, A.F., Fedotova, I.B., and Poletaeva, I.I., Rats of Krushinsky-Molodkina Strain: Studies of Audiogenic Epilepsy, Vascular Pathology, and Behavior, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2006, vol. 56, no. 2, pp. 249–267.Google Scholar
  64. Shadrina, M., Kolomin, T., Agapova, T., et al., Comparison of the Temporary Dynamics of NGF and BDNF Gene Expression in Rat Hippocampus, Frontal Cortex, and Retina under Semax Action, J. Mol. Neurosci., 2010, vol. 41, no. 1, pp. 30–35.PubMedCrossRefGoogle Scholar
  65. Shibuya, T., Watanabe, Y., Hill, H.F., et al., Developmental Alterations in Maturing Rats Caused by Chronic Prenatal and Postnatal Diazepam Treatments, Jpn. J. Pharmacol., 1986, vol. 40, no. 1, pp. 21–29.PubMedCrossRefGoogle Scholar
  66. Shilova, O.B., Orlova, E.O., Kovalev, G.I., et al., Strain-Specific Response to a Neonatal Injection of the ACTH4–10 Fragment in Mice: Behaviour, Neurochemistry, and Brain Morphology, Russ. J. Genet., 2000, vol. 36, no. 11, pp. 1267–1272.Google Scholar
  67. Shilova, O.B, Markina, N.V., Perepelkina, O.V., et al., Neonatal Semax and Saline Injections Induce Open-Field Behavior Changes in Mice of Different Genotypes, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2004, vol. 54, no. 6, pp. 785–794.Google Scholar
  68. Slotkin, T.A., Fetal Nicotine or Cocaine Exposure: Which One Is Worse?, J. Pharmacol. Exp. Ther., 1998, vol. 285, no. 3, pp. 931–945.PubMedGoogle Scholar
  69. Táira, T., Porkka-Heiskanen, T., and Korpi, E.R., Neonatal Administration of a GABA-T Inhibitor Alters Central GABAA Receptor Mechanisms and Alcohol Drinking in Adult Rats, Psychopharmacology (Berl.), 1992, vol. 109, nos. 1–2, pp. 191–197.CrossRefGoogle Scholar
  70. Táira, T., Uusi-Oukari, M., and Korpi, E.R., Early Postnatal Treatment with Muscimol Transiently Alters Brain GABA-A Receptors and Open-Field Behavior in Rat, Eur. J. Pharmacol., 1993, vol. 230, no. 3, pp. 307–312.PubMedCrossRefGoogle Scholar
  71. Tchekalarova, J., Kubová, H., and Mares, P., Effects of Postnatal Caffeine Exposure on Seizure Susceptibility in Developing Rats, Brain Res., 2007, vol. 1150, pp. 32–39.PubMedCrossRefGoogle Scholar
  72. Timoshenko, T.V., Perepelkina, O.V., Markina, N.V., et al., Audiogenic Epilepsy in Mice with Different Genotypes after Neonatal Treatments Enhancing Neurogenesis in Dentate Gyrus, Bull. Exp. Biol. Med., 2009a, vol. 147, no. 4, pp. 458–461.PubMedCrossRefGoogle Scholar
  73. Timoshenko, T.V., Revishchin, A.V., Pavlova, G.V., et al., Effect of Neonatal Injections of the Neuropeptide Semax on Cell Proliferation in Hippocampal Dentate Area in Rats of Two Genotypes, Dokl. Biol. Sci., 2009b, vol. 424, pp. 78–80.PubMedCrossRefGoogle Scholar
  74. Venerosi, A., Calamandrei, G., and Alleva, E., Animal Models of Anti-HIV Drugs Exposure during Pregnancy: Effects on Neurobehavioral Development, Prog. Neuropsychopharm. Biol. Psych., 2002, vol. 26, no. 4, pp. 747–761.CrossRefGoogle Scholar
  75. Venerosi, A., Cutuli, D., Colonnello, V., et al., Neonatal Exposure to Chlorpyrifos Affects Maternal Responses and Maternal Aggression of Female Mice in Adulthood, Neurotoxicol. Teratol., 2008, vol. 30, no. 6, pp. 468–474.PubMedCrossRefGoogle Scholar
  76. Viggedal, G., Hagberg, B.S., Laegreid, L., et al., Mental Development in Late Infancy after Prenatal Exposure to Benzodiazepines-A Prospective Study, J. Child Psychol. Psych., 1993, vol. 34, no. 3, pp. 295–305.CrossRefGoogle Scholar
  77. Vorhees, C.V., Developmental Neurotoxicity Induced by Therapeutic and Illicit Drugs, Env. Health Persp., 1994, vol. 102, Suppl. 2, pp. 145–153.Google Scholar
  78. Vorhees, C.V., Schaefer, T.L., Skelton, M.R., et al., (+/−) 3,4-Methylenedioxymethamphetamine (MDMA) Dose-Dependently Impairs Spatial Learning in the Morris Water Maze after Exposure of Rats to Different Five-Day Intervals from Birth to Postnatal Day Twenty, Dev. Neurosci., 2009, vol. 31, nos. 1–2, pp. 107–120.PubMedCrossRefGoogle Scholar
  79. Wang, C.Z., Yang, S.F., Xia, Y., et al., Postnatal Phencyclidine Administration Selectively Reduces Adult Cortical Parvalbumin-Containing Interneurons, Neuropsychopharmacology, 2008, vol. 33, pp. 2442–2455.PubMedCrossRefGoogle Scholar
  80. Williamsa, M.T., Blankenmeyer, T.L., Schaefera, T.L., et al., Long-Term Effects of Neonatal Methamphetamine Exposure in Rats on Spatial Learning in the Barnes Maze and on Cliff Avoidance, Corticosterone Release, and Neurotoxicity in Adulthood, Dev. Brain Res., 2003, vol. 147, pp. 163–175.CrossRefGoogle Scholar
  81. Williamsa, M.T., Moran, M.S., and Vorhees, C.V., Behavioral and Growth Effects Induced by Low Dose Methamphetamine Administration during the Neonatal Period in Rats, Int. J. Dev. Neurosci., 2004, vol. 22, nos. 5–6, pp. 273–283.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • I. I. Poletaeva
    • 1
  • O. V. Perepelkina
    • 1
  • O. S. Boyarshinova
    • 1
  • I. G. Lil’p
    • 1
  • N. V. Markina
    • 1
  • T. B. Timoshenko
    • 1
  • A. V. Revishchin
    • 2
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Institute for Gene BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations