Advertisement

Russian Journal of Developmental Biology

, Volume 43, Issue 2, pp 121–130 | Cite as

Chromatin folding in human spermatozoa. I. Dynamics of chromatin remodelling in differentiating human spermatids

  • E. A. Arifulin
  • E. E. Bragina
  • V. A. Zamyatnina
  • E. G. Volkova
  • E. V. Sheval’
  • S. A. Golyshev
  • L. N. Kintsurashvili
  • G. I. Kir’yanov
  • A. N. Prusov
  • V. Yu. Polyakov
Gametogenesis

Abstract

Changes in chromatin structure at different stages of differentiation of human spermatids were studied. It was shown that, in nuclei of early spermatids, chromatin is loosely packed and its structural element is an 8-nm fiber. This “elementary” fiber is predominant at the initial stages of differentiation; in the course of maturation, it is replaced by globular elements approximately 60 nm in diameter. In intermediate spermatids, these globules start to condense into fibrillar aggregates and reduce their diameter to 30–40 nm. At all stages of spermatid maturation, except the final stages, these globules are convergence centers for elementary fibers. This remodelling process is vectored and directed from the apical (acrosomal) to the basal pole of the nucleus. In mature spermatids, the elementary 8-nm fibers are almost absent and the major components are 40-nm fibrillar aggregates. The nuclei of mature spermatids are structurally identical with the nuclei of spermatozoa with the so-called “immature chromatin,” which are commonly found in a low proportion in sperm samples from healthy donors and may prevail over the normal cells in spermiogenetic disorders. The cause of this differentiation blockade remains unknown. Possibly, the formation of intermolecular bonds between protamines, which are required for the final stages of chromatin condensation, is blocked in a part of spermatids. The results of this study are discussed in comparison with the known models of nucleoprotamine chromatin organization in human spermatozoa.

Keywords

chromatin DNA spermiogenesis spermatid histones protamines supramolecular organization 

Abbreviations

DNP

deoxyribonucleoprotein

PBS

phosphate buffered saline (salt solution with a phosphate buffer system according to Dulbecco)

TUNEL

terminal dUTP nick end labeling (labeling the breaks by terminal dUTP binding)

DAPI

4′,6-diamidino-2-phenylindole

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, M.J., Lee, C., Lee, J.D., 4th, Pogany, G.C., Balooch, M., Siekhaus, W.J., and Balhorn, R., Atomic Force Microscopy of Mammalian Sperm Chromatin, Chromosoma, 1993, vol. 102, no. 9, pp. 623–630.PubMedCrossRefGoogle Scholar
  2. Allen, M.J., Lee, J.D., 4th, Lee, C., and Balhorn, R., Extent of Sperm Chromatin Hydration Determined by Atomic Force Microscopy, Mol. Reprod. Dev., 1996, vol. 45, no. 1, pp. 87–92.PubMedCrossRefGoogle Scholar
  3. Belmont, A.S. and Bruce, K., Visualization of G1 Chromosomes: a Folded, Twisted, Supercoiled Chromonema Model of Interphase Chromatid Structure, J. Cell. Biol., 1994, vol. 127, no. 2, pp. 287–302.PubMedCrossRefGoogle Scholar
  4. Bragina, E.E., Zamyatnina, V.A., Bocharova, E.N., Shileiko, L.V., Kurilo, L.F., Gusak, Yu.K., and Polyakov, V.Yu., Quantitative Ultrastructural Study of Sperm Chromatin in Infertility, Androl. Genit. Khir., 2009, no. 1, pp. 44–49.Google Scholar
  5. Carell, D.T., Emery, B.R., and Hammond, S., Altered Protamine Expression and Diminished Spermatogenesis: What Is the Link?, Hum. Reprod. Update, 2007, vol. 13, no. 3, pp. 313–327.CrossRefGoogle Scholar
  6. Chemes, H.E., Phenotypes of Sperm Pathology: Genetic and Acquired Forms in Infertile Men, J. Androl., 2000, vol. 21, no. 6, pp. 799–808.PubMedGoogle Scholar
  7. Chentsov, Yu.S. and Burakov, V.V., Chromonema: A Forgotten Level of Chromatin Folding in Mitotic Chromosomes, Biol. Membr., 2005, vol. 22, pp. 178–187.Google Scholar
  8. Chentsov, Yu.S. and Polyakov, V.Yu., Ul’trastruktura kletochnogo yadra (Cell Nucleus Ultrastructure), Moscow: Nauka, 1974.Google Scholar
  9. Haaf T., Ward D.C. Higher Order Nuclear Structure in Mammalian Sperm Revealed by in situ Hybridization and Extended Chromatin Fibers, Exp. Cell Res., 1995, vol. 219, no. 2, pp. 604–611.PubMedCrossRefGoogle Scholar
  10. Hud, N.V., Allen, M.J., Downing, K.H., Lee, J., and Balhorn, R., Identification of the Elemental Packing Unit of DNA in Mammalian Sperm Cells by Atomic Force Microscopy, Biochem. Biophys. Res. Commun., 1993, vol. 193, no. 3, pp. 1347–1354.PubMedCrossRefGoogle Scholar
  11. Meistrich, M.L., Mohapatra, B., Shirley, C.R., and Zhao, M., Roles of Transition Nuclear Proteins in Spermiogenesis, Chromosoma, 2003, vol. 111, no. 8, pp. 483–488.PubMedCrossRefGoogle Scholar
  12. Mudrak, O., Tomilin, N., and Zalensky, A., Chromosome Architecture in the Decondensing Human Sperm Nucleus, J. Cell Sci., 2005, vol. 118, no. 19, pp. 4541–4550.PubMedCrossRefGoogle Scholar
  13. Oliva, R., Protamines and Male Infertility, Hum. Reprod. Update, 2006, vol. 12, no. 4, pp. 417–435.PubMedCrossRefGoogle Scholar
  14. Piasecka, M., Gaczarzewicz, D., and Laszczyska, M., Evaluation of Sperm Genomic Integrity of Normozoospermic Men: A Prospective Study, Folia Histochem. Cytobiol., 2006, vol. 44, no. 2, pp. 117–122.PubMedGoogle Scholar
  15. Poliakov, V.Y., Vasin, V.I., and Chentsov, Y.S., Principles of Structural Organization of Mitotic Chromosomes in Several Higher Plants, Tsitologiia, 1969, vol. 11, no. 12, pp. 1477–1484.PubMedGoogle Scholar
  16. Prigent, Y., Muller, S., and Dadoune, J.P., Immunoelectron Microscopical Distribution of Histones H2B and H3 and Protamines during Human Spermiogenesis, Mol. Hum. Reprod., 1996, vol. 2, no. 12, pp. 929–935.PubMedCrossRefGoogle Scholar
  17. Prigent, Y., Troalen, F., and Dadoune, J.P., Immunoelectron Microscopic Visualization of Intermediate Basic Proteins HPI1 and HPI2 in Human Spermatids and Spermatozoa, Reprod. Nutr. Dev., 1998, vol. 38, no. 4, pp. 417–427.PubMedCrossRefGoogle Scholar
  18. Prusov, A.N., Polyakov, V.Y., Zatsepina, O.V., Chentsov, Y.S., and Fais, D., Rosette-Like Structures from Nuclei with Condensed (Chromomeric) Chromatin but not from Nuclei with Diffuse (Nucleomeric or Nucleosomic) Chromatin, Cell Biol. Int. Rep., 1983, vol. 7, no. 10, pp. 849–858.PubMedCrossRefGoogle Scholar
  19. Razin, S.V., Iarovaia, O.V., Sjakste, N., Sjakste, T., Bagdoniene, L., Rynditch, A.V., Eivazova, E.R., Lipinski, M., and Vassetzky, Y.S., Chromatin Domains and Regulation of Transcription, J. Mol. Biol., 2007, vol. 369, no. 3, pp. 597–607.PubMedCrossRefGoogle Scholar
  20. Richmond, T.J. and Davey, C.A., The Structure of DNA in the Nucleosome Core, Nature, 2003, vol. 423, no. 6936, pp. 145–150.PubMedCrossRefGoogle Scholar
  21. Shaman, J.A., Yamauchi, Y., and Ward, W.S., Function of the Sperm Nuclear Matrix, Arch. Androl., 2007, vol. 53, no. 3, pp. 135–140.PubMedCrossRefGoogle Scholar
  22. Sheval, E.V., Prusov, A.N., Kireev, I.I., Fais, D., and Polyakov, V.Y., Organization of Higher-Level Chromatin Structures (Chromomere, Chromonema and Chromatin Block) Examined using Visible Light-Induced Chromatin Photo-Stabilization, Cell Biol. Int., 2002, vol. 26, no. 7, pp. 579–591.PubMedCrossRefGoogle Scholar
  23. Sobhon, P., Tanphaichitr, N., Chutatape, C., Vongpayabal, P., and Panuwatsuk, W., Electron Microscopic and Biochemical Analyses of the Organization of Human Sperm Chromatin Decondensed with Sarkosyl and Dithiothreitol, J. Exp. Zool., 1982, vol. 223, no. 3, pp. 277–290.PubMedCrossRefGoogle Scholar
  24. Sobhon, P., Thungkasemvathana, P., and Tanphaichitr, N., Electron Microscopic Studies of Rat Sperm Heads Treated with Urea, Dithiothreitol, and Micrococcal Nuclease, Anat. Rec., 1981, vol. 201, no. 2, pp. 225–235.PubMedCrossRefGoogle Scholar
  25. Thoma F., Koller T., and Klug, A., Involvement of Histone H1 in the Organization of the Nucleosome and of the Salt-Dependent Superstructures of Chromatin, J. Cell Biol., 1979, vol. 83, no. 2 (1), pp. 403–427.PubMedCrossRefGoogle Scholar
  26. Wagner, T.E. and Yun, J.S., Fine Structure of Human Sperm Chromatin, Arch. Androl., 1979, vol. 2, no. 4, pp. 291–294.PubMedCrossRefGoogle Scholar
  27. Ward, M.A. and Ward, W.S., A Model for the Function of Sperm DNA Degradation, Reprod. Fertil. Dev., 2004, vol. 16, no. 5, pp. 547–554.PubMedCrossRefGoogle Scholar
  28. Worawittayawong, P., Leigh, C., Weerachatyanukul, W., Manochantr, S., Sobhon, P., Breed, W.G., and Sretarugsa, P., Changes in Distribution of Basic Nuclear Proteins and Chromatin Organization during Spermiogenesis in the Greater Bandicoot Rat, Bandicota indica, Cell Tissue Res., 2008, vol. 334, no. 1, pp. 135–144.CrossRefGoogle Scholar
  29. Zatsepina, O.V., Polyakov, V.Yu., and Chentsov, Yu.S., Electron Microscopic Study of the Chromonema and Chromomeres in Mitotic and Interphase Chromosomes, Tsitologiia, 1983, vol. 25, no. 2, pp. 123–120.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • E. A. Arifulin
    • 1
  • E. E. Bragina
    • 2
  • V. A. Zamyatnina
    • 2
  • E. G. Volkova
    • 1
  • E. V. Sheval’
    • 2
  • S. A. Golyshev
    • 2
  • L. N. Kintsurashvili
    • 2
  • G. I. Kir’yanov
    • 2
  • A. N. Prusov
    • 2
  • V. Yu. Polyakov
    • 2
  1. 1.Department of Bioengineering and Bioinformatics, Faculty of BiologyMoscow State UniversityMoscowRussia
  2. 2.Belozerskii Institute of Physicochemical BiologyMoscow State UniversityMoscowRussia

Personalised recommendations