Comparative characteristics of new human embryonic stem cell lines SC5, SC6, SC7, and SC3a

  • A. M. Kol’tsova
  • O. F. Gordeeva
  • T. A. Krylova
  • N. V. Lifantseva
  • A. S. Musorina
  • T. K. Yakovleva
  • G. G. Poljanskaya
Developmental Biology of Mammals

Abstract

Numerous human embryonic stem cell lines with different genetic background are widely used as cell models for fundamental, biomedical, and pharmacological research. New hES cell lines SC5, SC6, SC7, and SC3a are derived from the blastocysts and maintained on mitotically inactivated human feeder cells. All derived hES cell lines passed through more than 120 cell population doublings, retained normal diploid karyotype and ability for in vitro differentiation in the derivates of three germ layers. These lines express the markers of undifferentiated hES cells: Oct-4, Nanog, SSEA-4, TRA-1-60, and alkaline phosphatase. Moreover, undifferentiated cells of SC5, SC6, and SC7 lines expressed germ line specific genes DPPA3/STELLA and DAZL and did not express somatic lineage specific genes. In contrast, undifferentiated cells of the SC3a line did not express DPPA3/STELLA and DAZL but expressed extra embryonic endoderm cell markers GATA4 and AFP. Double staining of SC5 and SC3a colonies by antibodies against transcription factors Oct-4 and GATA4 has demonstrated that most SC3a cells in colonies were positive for both factors. Furthermore, the cells of SC5, SC6, and SC7 lines but not of the SC3a line formed teratomas containing derivates of the three germ layers. These results indicate that, in contrast to the other cell lines, the cells in the SC3a colonies represent an early committed cell population. Moreover, expression of the multidrug resistance transporter gene ABCG2 was detected in undifferentiated cells and differentiated embryonic bodies (EB) of all lines during 10 days by immunofluorescent and RT-PCR analysis, whereas RT-PCR analysis has revealed up-regulation of the ABCB1 transporter gene expression in differentiating embryoid bodies of SC5, SC6, and SC7 cells only. Thus, these findings demonstrate different characteristics and differentiation potential of SC5, SC6, SC7, and SC3a hES cell lines, which were derived in different conditions.

Keywords

human embryonic stem cells marker expression differentiation karyotype 

References

  1. Abeyta, M.J., Clark, A.T., Rodrigues, R.T., et al., Unique Gene Expression Signatures of Independently-Derived Human Embryonic Stem Lines, Hum. Mol. Genet., 2004, vol. 13, pp. 601–608.PubMedCrossRefGoogle Scholar
  2. Aguilar-Gallardo, C., Poo, M., Gomez, E., et al., Derivation, Characterization, Differentiation, and Registration of Seven Human Embryonic Stem Cell Lines (VAL-3, -4, -5, -6M, -7, -8, and -9) on Human Feeder, In Vitro Cell Dev. Biol. Anim., 2010, vol. 46, pp. 317–326.PubMedCrossRefGoogle Scholar
  3. Allegrucci, C. and Young, L.E., Differences between Human Embryonic Stem Cell Lines, Hum. Reprod. Update, 2007, vol. 13, pp. 103–120.PubMedCrossRefGoogle Scholar
  4. Amit, M., Chebath, J., Margulets, V., et al., Suspension Culture of Undifferentiated Human Embryonic and Induced Pluripotent Stem Cells, Stem Cell Rev., 2010, vol. 6, pp. 248–259.PubMedCrossRefGoogle Scholar
  5. Amit, M., Shariki, C., Margulets, V., and Itskovitz-Eldor, J., Feeder and Serum Free Culture of Human Embryonic Stem Cells, Biol. Reprod., 2004, vol. 70, pp. 837–845.PubMedCrossRefGoogle Scholar
  6. Apati, A., Orban, T.I., Varga, N., et al., High Level Functional Expression of the ABCG2 Multidrug Transporter in Undifferentiated Human Embryonic Stem Cells, Biochim. Biophys. Acta, 2008, vol. 1778, pp. 2700–2709.PubMedCrossRefGoogle Scholar
  7. Baker, D.E., Harrison, N.J., Maltby, E., et al., Adaptation to Culture of Human Embryonic Stem Cells and Oncogenesis in vitro, Nature Biotechnol., 2007, vol. 25, pp. 207–215.CrossRefGoogle Scholar
  8. Bhattacharya, B., Miura, T., Brandenberger, R., et al., Gene Expression in Human Embryonic Stem Cell Lines: Unique Molecular Signature, Blood, 2004, vol. 103, pp. 2956–2961.PubMedCrossRefGoogle Scholar
  9. Carpenter, M.K., Rosler, E.S., Fisk, G.J., et al., Properties of Four Human Embryonic Stem Cell Lines Maintained in a Feeder-Free Culture System, Dev. Dyn., 2004, vol. 229, pp. 243–258.PubMedCrossRefGoogle Scholar
  10. Chavez, S.L., Meneses, J.J., Nguyen, N.M., et al., Characterization of Six New Human Embryonic Stem Cell Lines (HSF7, -8, -9, -10, -12, and -13) Derived under Minimal-Animal Component Conditions, Stem Cells Dev., 2008, vol. 17, pp. 535–546.PubMedCrossRefGoogle Scholar
  11. Cowan, C.A., Klimanskaya, I., McMahon, J., et al., Derivation of Embryonic Stem-Cell Lines from Human Blastocysts, New Engl. J. Med., 2004, vol. 350, pp. 1353–1356.PubMedCrossRefGoogle Scholar
  12. Draper, J.S., Smith, K., Gokhale, P., et al., Recurrement Gain of Chromosomes 17q and 12 in Cultured Human Embryonic Stem Cells, Nat. Biotechnol., 2004, vol. 22, pp. 53–54.PubMedCrossRefGoogle Scholar
  13. Drukker, M., Katz, G., Urbach, A., et al., Characterization of the Expression of MHC Proteins in Human Embryonic Stem Cells, Proc. Nat. Acad. Sci. USA, 2002, vol. 99, pp. 9864–9869.PubMedCrossRefGoogle Scholar
  14. Ellerstrom, C., Strehl, R., Moya, K., et al., Derivation of a Xeno-Free Human ES Cell Line, Stem Cells, 2006, vol. 24, pp. 2170–2176.PubMedCrossRefGoogle Scholar
  15. Englund, M.C., Caisander, G., Noaksson, K., et al., The Establishment of 20 Different Human Embryonic Stem Cell Lines and Subclones; a Report on Derivation, Culture, Characterisation and Banking, In Vitro Cell Dev. Biol. Anim., 2010, vol. 46, pp. 217–230.PubMedCrossRefGoogle Scholar
  16. Ezashi, T., Das, P., and Roberts, R.M., Low O2 Tensions and the Prevention of Differentiation of HES Cell, Proc. Natl. Acad. USA, 2005, vol. 102, pp. 4783–4788.CrossRefGoogle Scholar
  17. Forsyth, N.R., Musio, A., Vezzoni, P., et al., Physiologic Oxygen Enhances Human Embryonic Stem Cell Clonal Recovery and Reduces Chromosomal Abnormalities, Cloning Stem Cells, 2006, vol. 8, pp. 16–23.PubMedCrossRefGoogle Scholar
  18. Ginis, I., Luo, Y., Takumi, M., et al., Differences between Human and Mouse Embryonic Stem Cells, Dev. Biol., 2004, vol. 269, pp. 360–380.PubMedCrossRefGoogle Scholar
  19. Gopalakrishna-Pillai, S. and Iverson, L.E., Astrocytes Derived from Trisomic Human Embryonic Stem Cells Express Markers of Astrocytic Cancer Cells and Premalignant Stem-Like Progenitors, BMC Med. Genomics, 2010, vol. 3, pp. 12–30.PubMedCrossRefGoogle Scholar
  20. Harrison, N.J., Baker, D., and Andrews, P.W., Culture Adaptation of Embryonic Stem Cells Echoes Germ Cell Malignancy, Int. J. Androl., 2007, vol. 30, pp. 275–281.PubMedCrossRefGoogle Scholar
  21. Hasegawa, K., Pomeroy, J.E., and Pera, M.F., Current Technology for the Derivation of Pluripotent Stem Cell Lines from Human Embryos, Cell Stem Cell, 2010, vol. 6, pp. 521–531.PubMedCrossRefGoogle Scholar
  22. Heins, N., Lindahl, A., Karlsson, U., et al., Clonal Derivation and Characterization of Human Embryonic Stem Cell Lines, J. Biotechnol., 2006, vol. 122, pp. 511–520.PubMedCrossRefGoogle Scholar
  23. Imreh, M.P., Gertow, K., Cederwall, J., et al., In vitro Culture Conditions Favoring Selection of Chromosomal Abnormalities in Human ES Cells, J. Cell Biochem., 2006, vol. 99 P, pp. 508–516.CrossRefGoogle Scholar
  24. Inzunza, J., Gertow, K., Stromberg, M.A., et al., Derivation of Human Embryonic Stem Cell Lines in Serum Replacement Medium Using Postnatal Human Fibroblasts as Feeder Cells, Stem Cells, 2005, vol. 23, pp. 544–549.PubMedCrossRefGoogle Scholar
  25. Kim, S.E., Kim, B.K., Gil, J.E., et al., Comparative Analysis of the Developmental Competence of Three Human Embryonic Stem Cell Lines in vitro, Mol. Cells, 2007, vol. 23, pp. 49–56.PubMedGoogle Scholar
  26. Klimanskaya, I., Chung, Y., Meisner, L., et al., Human Embryonic Stem Cells Derived Without Feeder Cells, Lancet, 2005, vol. 365, pp. 1636–1641.PubMedCrossRefGoogle Scholar
  27. Krylova, T.A., Kol’tsova, A.M., Zenin, V.V., et al., The Characters and Specific Features of New Human Embryonic Stem Cells Lines, Tsitologiia, 2009, vol. 51, no. 7, pp. 565–576.PubMedGoogle Scholar
  28. Kubikova, I., Konecna, H., Sedo, O., et al., Proteomic Profiling of Human Embryonic Stem Cell-Derived Microvesicles Reveals a Risk of Transfer of Proteins of Bovine and Mouse Origin, Cytotherapy, 2009, vol. 11, pp. 330–340.PubMedCrossRefGoogle Scholar
  29. Lagarkova, M.A., Volchkov, P.Y., Lyakisheva, A.V., et al., Diverse Epigenetic Profile of Novel Human Embryonic Stem Cell Lines, Cell Cycle, 2006, vol. 5, pp. 416–420.PubMedCrossRefGoogle Scholar
  30. Laursen, S.B., Mllgard, K., Olesen, C., et al., Regional Differences in Expression of Specific Markers for Human Embryonic Stem Cells, Reprod. Biomed. Online, 2007, vol. 15, pp. 89–98.PubMedCrossRefGoogle Scholar
  31. Lengner, C.J., Gimelbrant, A.A., Erwin, J.A., et al., Derivation of Pre-X Inactivation Human Embryonic Stem Cells Under Physiological Oxygen Concentrations, Cell, 2010, vol. 141, pp. 872–883.PubMedCrossRefGoogle Scholar
  32. Liu, Y., Song, Z., Zhao, Y., et al., A Novel Chemical-Defined Medium with BFGF and N2 B27 Supplements Supports Undifferentiated Growth in Human Embryonic Stem Cells, Biochem. Biophys. Res. Commun., 2006, vol. 346, pp. 131–139.PubMedCrossRefGoogle Scholar
  33. Lu, J., Hou, R., Booth, C.J., et al., Defined Culture Conditions of Human Embryonic Stem Cells, Proc. Natl. Acad. USA, 2006, vol. 103, pp. 5688–5693.CrossRefGoogle Scholar
  34. Ludwig, T.E., Levenstein, M.E., Jones, M.J., et al., Derivation of Human Embryonic Stem Cells in Defined Conditions, Nat. Biotechnol., 2006, vol. 24, pp. 185–187.PubMedCrossRefGoogle Scholar
  35. Martin, M.J., Muotri, A., Gage, F., and Varki, A., Human Embryonic Stem Cells Express an Immunogenic Nonhuman Sialic Acid, Nat. Med, 2005, vol. 11, pp. 228–232.PubMedCrossRefGoogle Scholar
  36. Meisner, L.F. and Johnson, J.A., Protocols for Cytogenetics Studies of Human Embryonic Stem Cells, Methods, 2008, vol. 45, pp. 133–141.PubMedCrossRefGoogle Scholar
  37. Miyazaki, T., Futaki, S., Hasegawa, K., et al., Recombinant Human Laminin Isoforms Can Support the Undifferentiated Growth of Human Embryonic Stem Cells, Biochem. Biophys. Res. Commun., 2008, vol. 375, pp. 27–32.PubMedCrossRefGoogle Scholar
  38. Mohr, J.C., de Pablo, J.J., and Palecek, S.P., 3-D Microwell Culture of Human Embryonic Stem Cells, Biomaterials, 2006, vol. 27, pp. 6032–6042.PubMedCrossRefGoogle Scholar
  39. Oh, S.K., Kim, H.S., Ahn, H.J., et al., Derivation and Characterization of New Human Embryonic Stem Cell Lines: SNUhES1, SNUhES2, and SNUhES3, Stem Cells, 2005, vol. 23, pp. 211–219.PubMedCrossRefGoogle Scholar
  40. Ozkinay, C. and Mitelman, F., A Simple Trypsin-Giemsa Technique Producing Simultaneous G- and C-Banding in Human Chromosomes, Hereditas, 1979, vol. 90, pp. 1–4.PubMedCrossRefGoogle Scholar
  41. Pal, R., Totey, S.S., Mamidi, M.K., et al., Propensity of Human Embryonic Stem Cell Lines During Early Stage of Lineage Specification Control Their Terminal Differentiation into Mature Cell Types, Exp. Biol. Med. (Maywood), 2009, vol. 234, pp. 1230–1243.CrossRefGoogle Scholar
  42. Priddle, H., Allegrucci, C., Burridge, P., et al., Derivation and Characterisation of the Human Embryonic Stem Cell Lines, NOTT1 and NOTT2, In Vitro Cell Dev. Biol. Anim., 2010, vol. 46 P, pp. 367–375.CrossRefGoogle Scholar
  43. Prowse, A.B., Doran, M.R., Cooper-White, J.J., et al., Long Term Culture of Human Embryonic Stem Cells on Recombinant Vitronectin in Ascorbate Free Media, Biomaterials, 2010, vol. 31, pp. 8281–8288.PubMedCrossRefGoogle Scholar
  44. Rajala, K., Hakala, H., Panula, S., et al., Testing of Nine Different Xeno-Free Culture Media for Human Embryonic Stem Cell Cultures, Hum. Reprod., 2007, vol. 22, pp. 1231–1238.PubMedCrossRefGoogle Scholar
  45. Richards, M., Tan, S., Fong, C-Y., et al., Comparative Evaluation of Various Human Feeders for Prolonged Undifferentiated Growth of Human Embryonic Stem Cells, Stem Cells, 2003, vol. 21, pp. 546–556.PubMedCrossRefGoogle Scholar
  46. Rosler, E., Fisk, G.J., Ares, X., et al., Long-Term Culture of Human Embryonic Stem Cells in Feeder-Free Conditions, Dev. Dyn., 2004, vol. 229, pp. 259–274.PubMedCrossRefGoogle Scholar
  47. Sarkadi, B., Homolya, L., Szakcs, G., and Vradi, A., Human Multidrug Resistance ABCB and ABCG Transporters: Participation in a Chemoimmunity Defense System, Physiol. Rev., 2006, vol. 86, pp. 1179–1236.PubMedCrossRefGoogle Scholar
  48. Sarkadi, B., Orbn, T.I., Szakcs, G., et al., Evaluation of ABCG2 Expression in Human Embryonic Stem Cells: Crossing the Same River Twice?, Stem cells, 2009, vol. 28, pp. 174–176.Google Scholar
  49. Shaffer, L.G., Slovak, M.L., and Campbell, L. (Eds), An International System for Human Cytogenetic Nomenclature (ISCN), Basel: S. Karger, 2009.Google Scholar
  50. Sidhu, K.S. and Tuch, B.E., Derivation of Clones from Human Embryonic Stem Cell Lines by FACS Sorting and Their Characterization, Stem Cells Devel., 2006, vol. 15, pp. 61–69.CrossRefGoogle Scholar
  51. Skottman, H. and Hovatta, O., Culture Conditions for Human Embryonic Stem Cells, Reproduction, 2006, vol. 132, pp. 691–698.PubMedCrossRefGoogle Scholar
  52. Skottman, H., Derivation and Characterization of Three New Human Embryonic Stem Cell Lines in Finland, In Vitro Cell Dev. Biol. Anim., 2010, vol. 46, pp. 206–209.PubMedCrossRefGoogle Scholar
  53. Skottman, H., Dilber, M.S., and Hovatta, O., The Derivation of Clinical-Grade Human Embryonic Stem Cell Lines, FEBS Lett., 2006, vol. 580, pp. 2875–2878.PubMedCrossRefGoogle Scholar
  54. Spits, C., Mateizel, I., Geens, M., et al., Recurrent Chromosomal Abnormalities in Human Embryonic Stem Cells, Nat. Biotechnol., 2008, vol. 26, pp. 1361–1363.PubMedCrossRefGoogle Scholar
  55. Ström, S., Holm, F., Bergström, R., et al., Derivation of 30 Human Embryonic Stem Cell Lines-Improving the Quality, In Vitro Cell Dev. Biol. Anim., 2010, vol. 46, pp. 337–344.PubMedCrossRefGoogle Scholar
  56. Steiner, D., Khaner, H., Cohen, M., et al., Derivation, Propagation and Controlled Differentiation of Human Embryonic Stem Cells in Suspension, Nat. Biotechnol., 2010, vol. 28, pp. 361–366.PubMedCrossRefGoogle Scholar
  57. Stewart, M.H., Bosse, M., Cladwick, K., et al., Clonal Isolation of hESCs Reveals Heterogeneity within the Pluripotent Stem Cell Compartment, Nature Methods, 2006, vol. 3, pp. 807–815.PubMedCrossRefGoogle Scholar
  58. Tavakoli, T., Xu, X., Derby, E., et al., Self-Renewal and Differentiation Capabilities Are Variable Between Human Embryonic Stem Cell Lines 13, 16 and BG01V, BMC Cell Biol., 2009, vol. 10, pp. 44–58.PubMedCrossRefGoogle Scholar
  59. Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., et al., Embryonic Stem Cell Lines Derived from Human Blastocysts, Science, 1998, vol. 282, pp. 1145–1147.PubMedCrossRefGoogle Scholar
  60. Vazin, T. and Freed, W.J., Human Embryonic Stem Cells: Derivation, Culture, and Differentiation: A Review, Restor. Neurol. Neurosci., 2010, vol. 28, pp. 589–603.PubMedGoogle Scholar
  61. Wang, G., Zhang, H., Zhao, Y., et al., Noggin and BFGF Cooperate to Maintain the Pluripotency of Human Embryonic Stem Cells in the Absence of Feeder Layers, Biochem. Biophys. Res. Commun., 2005, vol. 330, pp. 934–942.PubMedCrossRefGoogle Scholar
  62. Xu, C., Inokuma, M.S., Denham, J., et al., Feeder-Free Growth of Undifferentiated Human Embryonic Stem Cells, Nature Biotechnol., 2001, vol. 19, pp. 971–974.CrossRefGoogle Scholar
  63. Yang, S., Lin, G., Tan, Y.Q., et al., Differences between Karyotypically Normal and Abnormal Human Embryonic Stem Cells, Cell Prolif., 2010, vol. 43, pp. 195–206.PubMedCrossRefGoogle Scholar
  64. Yang, S., Lin, G., Tan, Y.Q., et al., Tumor Progression of Culture-Adapted Human Embryonic Stem Cells during Long-Term Culture, Genes Chromosomes Cancer, 2008, vol. 47, pp. 665–679.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • A. M. Kol’tsova
    • 1
  • O. F. Gordeeva
    • 2
  • T. A. Krylova
    • 1
  • N. V. Lifantseva
    • 2
  • A. S. Musorina
    • 1
  • T. K. Yakovleva
    • 1
  • G. G. Poljanskaya
    • 1
  1. 1.Institute of CytologyRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Kol’tsov Institute of Developmental BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations