Interaction between the PINOID/ABRUPTUS gene with the AGAMOUS gene negatively regulating stem cells proliferetion in the Arabidopsis thaliana floral meristem

  • U. N. Kavai-oolEmail author
  • O. Yu. Karpenko
  • T. A. Ezhova
Developmental Genetics


Complementary interaction between the AGAMOUS and PINOID/ABRUPTUS genes was revealed. In double mutant abr ag-1, there is a significant increasing proliferation of cells of the floral meristem and formation of branching shoot-like flowers. These data indicate the participation of the PID/ABR gene in limitation of stem cells proliferation in the floral meristem. The revealed increase of transcription level of WUS gene in flowers of the abr mutant, as well as distortion of auxin distribution, allow us to suggest that the PID/ABR gene controls auxin transport and participates in positioning of expression domains for the WUS gene.


flower development gene interaction stem cells auxin transport mutants Arabidopsis thaliana 


  1. Coen, E.S. and Meyerowitz, E.M., The War of the Whorls: Genetic Interactions Controlling Flower Development, Nature, 1991, vol. 353, no. 6339, pp. 31–37.PubMedCrossRefGoogle Scholar
  2. Ezhova, T.A., Soldatova, O.P., Kalinina, A.Yu., and Medvedev, S.S., Interaction of ABRUPTUS/PINOID and LEAFY Genes during Floral Morphogenesis in Arabidopsis thaliana (L.) Heynh, Genetika, 2000, vol. 36, no. 12, pp. 1682–1687.PubMedGoogle Scholar
  3. Laux, T., Mayer, K.F.X., Berger, J., and Jrgens, G., The WUSCHEL Gene Is Required for Shoot and Floral Meristem Integrity in Arabidopsis, Development, 1996, vol. 122, pp. 87–96.PubMedGoogle Scholar
  4. Lenhard, M., Bohnert, A., Jurgens, G., and Laux, T., Termination of Stem Cell Maintenance in Arabidopsis Floral Meristems by Interactions between WUSCHEL and AGAMOUS, Cell, 2001, vol. 105, pp. 805–814.PubMedCrossRefGoogle Scholar
  5. Lohmann, J.U., Hong, R.L., Hobe, M., et al., A Molecular Link between Stem Cell Regulation and Floral Patterning in Arabidopsis, Cell, 2001, vol. 105, no. Iss. 6, pp. 793–803.PubMedCrossRefGoogle Scholar
  6. Petrášek, J. and Friml, J., Auxin Transport Routes in Plant Development, Development, 2009, vol. 136, pp. 2675–2688.PubMedCrossRefGoogle Scholar
  7. Sorefan, K., Girin, T., Liljegren, S.J., et al., A Regulated Auxin Minimum Is Required for Seed Dispersal in Arabidopsis, Nature, 2009, vol. 459, pp. 583–586.PubMedCrossRefGoogle Scholar
  8. Su, Y.H., Zhao, X.Y., Liu, YuB., et al., Auxin-Induced WUS Expression Is Essential for Embryonic Stem Cell Renewal during Somatic Embryogenesis in Arabidopsis, Plant J., 2009, vol. 59, pp. 448–460.PubMedCrossRefGoogle Scholar
  9. Ulmasov, T., Murfett, J., Hagen, G., and Guilfoyle, T.J., Aux/IAA Proteins Repress Expression of Reporter Genes Containing Natural and Highly Active Synthetic Auxin Response Elements, Plant Cell, 1997, vol. 9, pp. 1963–1971.PubMedCrossRefGoogle Scholar
  10. Vu, Kh.Ch., Ondar, U.N., and Soldatova, O.P., Expression of New Mutant Alleles of AS1 and AS2 Genes Controlling Leaf Morphogenesis in Arabidopsis thaliana, Ontogenez, 2008, vol. 39, no. 1, pp. 8–14.Google Scholar
  11. Zhang, J., Nodzynński, T., Pěnčík, A., et al., PIN Phosphorylation Is Sufficient to Mediate PIN Polarity and Direct Auxin Transport, Proc. Natl. Acad. Sci. USA, 2010, vol. 107, no. 2, pp. 918–922.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • U. N. Kavai-ool
    • 1
    • 2
    Email author
  • O. Yu. Karpenko
    • 3
  • T. A. Ezhova
    • 3
  1. 1.Department of General BiologyTuva State UniversityKyzylRussia
  2. 2.Vavilov Institute of General GeneticsMoscowRussia
  3. 3.Department of GeneticsMoscow State UniversityMoscowRussia

Personalised recommendations