Russian Journal of Developmental Biology

, Volume 41, Issue 6, pp 357–368 | Cite as

From Vendian to Cambrian: the beginning of morphological disparity of modern metazoan phyla

  • S. V. Rozhnov
Conference Materials on Diversity of Ontogenesis: Morphological, Physiological, and Genetic Aspects (Moscow, November 23–24, 2009)


Continuity of the transition from Precambrian to the Phanerozoic metazoan fauna at the phylum level is analyzed. The discrete traces of feeding on bacterial mats by Dickinsonia and similar organisms are explained by extracorporeal digestion, characteristic of a placozoan level of organization, as in the extant Trichoplax. The absence of a morphologically developed anterior end of the body, of food-gathering appendages of any kind, and of appendages responsible for movement suggest that these animals were at this level of organization. Probably, an expanded placozoan level of organization can be assumed for most Vendian animals. Against this background, new characters emerged in the Cambrian to be included in the body plan of extant animal phyla. The relationships between the morphological archetype (body plan) and morphogenetic archetype are considered. It is shown that major features of a morphogenetic archetype could be retained from the time the taxon was formed.


Metazoa higher taxa body plan morphogenesis origin Vendian Cambrian 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arendt, Yu.A., Morskie lilii tsirtokrinidy (The Sea Lilies Cyrtocrinids), Moscow: Nauka, 1974.Google Scholar
  2. Barrois, J., Development de Comatule (C. mediterranea), Recueil Zool. Suisse, 1888, vol. 4, pp. 544–551.Google Scholar
  3. Behrendt, G. and Ruthmann, A., The Cytoskeleton of the Fiber Cells of Trichoplax adhaerens (Placozoa), Zoomorphology, 1986, vol. 106, pp. 123–130.CrossRefGoogle Scholar
  4. Bottjer, D.J. and Clapham, M.E., Evolutionary Paleoecology of Ediacaran Benthic Marine Animals, in Neoproterozoic Geobiology and Paleobiology, Xiao, S. and Kaufman, A.J., Eds., New York: Springer, 2006, pp. 91–114.CrossRefGoogle Scholar
  5. Briggs D.E., Erwin, D.H., and Collier, F.J., The Fossils of the Burgess Shale, Washington, DC: Smithson. Inst. Press, 1994.Google Scholar
  6. Cloud, P. and Glaessner, M.F., The Ediacarian Period and System: Metazoa Inherit the Earth, Science, 1982, vol. 217, no. 4562, pp. 783–792.PubMedCrossRefGoogle Scholar
  7. Conway Morris, S., The Cambrian “Explosion”: Slow-Fuse or Megatonnage?, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 4430–4433.CrossRefGoogle Scholar
  8. Davidson, E.H. and Erwin, D.H., Gene Regulatory Networks and the Evolution of Animal Body Plans, Science, 2006, vol. 311, pp. 796–800.PubMedCrossRefGoogle Scholar
  9. Droser, M.L., Jensen, S., and Gehling, J.G., Trace Fossils and Substrates of the Terminal Proterozoic-Cambrian Transition: Implications for the Record of Early Bilaterians and Sediment Mixing, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 12572–12576.PubMedCrossRefGoogle Scholar
  10. Fedonkin, M.A., Simonetta A., Ivantsov A.Y. New Data on Kimberella, the Vendian Mollusk-Like Organism (White Sea Region, Russia): Palaeoecological and Evolutionary Implications, in The Rise and Fall of the Ediacaran Biota, Vickers-Rich, P. and Komarower, P., Eds., London: Geolog. Soc., 2007.Google Scholar
  11. Fedonkin, M.A., Besskeletnaya fauna venda i ee mesto v evolyutsii Metazoa (The Nonskeletal Vendian Fauna and Its Place in the Evolution of Metazoa), Moscow: Nauka, 1987.Google Scholar
  12. Gehling, J.G., Earliest Known Echinoderm-A New Ediacaran Fossil from the Pound Subgroup of South Australia, Alcheringa, 1987, vol. 11, pp. 337–345.CrossRefGoogle Scholar
  13. Glaessner, M.F., The Dawn of Animal Life: A Biohistorical Study, Cambridge: Univ. Press, 1984.Google Scholar
  14. Grazhdankin, D.V. and Ivantsov, A.Y., Reconstructions of Biotopes of Ancient Metazoan of the Late Vendian White Sea Biota, Palaeontol. J., 1996, vol. 30, pp. 674–678.Google Scholar
  15. Grazhdankin, D.V. and Seilacher, A., Underground Vendobionta from Namabia, Palaeontology, 2002, vol. 45, pp. 57–78.CrossRefGoogle Scholar
  16. Grell, K.G. and Benwitz, G., Erganzende Untersuchungen zur Ultrastructur von Trichoplax adhaerens F.E. Schulze (Placozoa), Zoomorphology, 1981, vol. 98, pp. 47–67.CrossRefGoogle Scholar
  17. Ivanov, A.V., The Taxonomic Position of Mesozoa, Tr. Zool. Inst. Akad. Nauk SSSR, 1983, vol. 109, pp. 76–89.Google Scholar
  18. Ivanov, A.V., Trichoplax adhaerencs-A Phagocytelle-Like Animal, Zool. Zhurn., 1973, vol. 52, no. 8, pp. 1117–1130.Google Scholar
  19. Ivanov, D.L., Malakhov, V.V., and Tsetlin, A.B., Fine Morphology and Ultrastructure of the Primitive Metazoan Trichoplax sp. 1. Morphology of Adult Animals and Wanderers according to Scanning Electron Microscopic Data, Zool. Zhurn., 1980, vol. 59, no. 12, pp. 1765–1767.Google Scholar
  20. Ivanova-Kazas, O.M., Sravnitel’naya embriologiya bespozvonochnykh zhivotnykh. Iglokozhie i polukhordovye (Comparative Embryology of Invertebrate Animals. Echinoderms and Semichordates), Moscow: Nauka, 1978.Google Scholar
  21. Ivantsov, A.Yu. and Malakhovskaya, Ya.E., Gigantic Traces of Vendian Animals, Dokl. Akad. Nauk, 2002, vol. 385, pp. 328–386.Google Scholar
  22. Jefferies, R.P.S., The Ancestry of the Vertebrates, London: British Museum (Natural History), 1986.Google Scholar
  23. Jenkins, G., A Review of the Frond-Like Fossils of the Ediacara Assemblage, Rec. South Austral. Museum, 1978, vol. 17, no. 23, pp. 347–359.Google Scholar
  24. Malakhov, V.V. and Nezlin, L.P., Trichoplax-A Living Model of the Origin of Metazoans, Priroda (Moscow, Russ. Fed.), 1983, no. 3, pp. 32–41.Google Scholar
  25. Malakhov, V.V., Zagadochnye gruppy morskikh bespozvonochnykh (Intricate Groups of Marine Invertebrates), Moscow: Mosk. Gos. Univ., 1990.Google Scholar
  26. Mamkaev, Yu.V., Methods and Trends in Evolutionary Morphology, in Sovremennaya evolyutsionnaya biologiya (Modern Evolutionary Biology), Kiev: Naukova Dumka, 1991, pp. 33–56.Google Scholar
  27. Mamkaev, Yu.V., Comparison of Morphological Distinctions in Lower and Higher Groups of the Same Phylogenetic Stem, Zh. Obshch. Biol., 1968, vol. 21, no. 1, pp. 48–56.Google Scholar
  28. Narbonne, G.M., Modular Construction of Early Ediacaran Complex Life Forms, Science, 2004, vol. 305, pp. 1141–1144.PubMedCrossRefGoogle Scholar
  29. Nielsen, C., Animal Evolution: Interrelationships of the Living Phyla, Oxford: Univ. Press, 2006.Google Scholar
  30. Okshtein, I.L., To Biology of Trichoplax sp. (Placozoa), Zool. Zh., 1987, vol. 66, no. 3, pp. 339–347.Google Scholar
  31. Pequignat, E., Some New Data on Skin-Digestion and Absorption in Urchins and Sea Stars (Asterias and Henricia), Marine Biol., 1972, vol. 12. pp. 28–41.Google Scholar
  32. Peterson, K.J. and Davidson, E.H., Regulatory Evolution and the Origin of the Bilaterians, Proc. Natl. Acad. Sci., 2000, vol. 97, pp. 4430–4433.PubMedCrossRefGoogle Scholar
  33. Rozanov, A.Yu., Zakonomernosti morfologicheskoi evolyutsii arkheotsiat i voprosy yarusnogo raschleneniya nizhnego kembriya (Consistent Patterns of Morphological Evolution of Archaeociates and Issues of Layered Segregation of the Lower Cambrian), Moscow: Nauka, 1973.Google Scholar
  34. Rozhnov S.V., Crookedness of the Stem and Crown of Pelmatozoan Echinoderms as Resulting from Different Kinds of Heterochrony, Proc. European Conf. on Echinoderms, Milan: Balkema, 1998, pp. 385–390.Google Scholar
  35. Rozhnov, S.V., Development of the Trophic Structure of Vendian and Early Paleozoic Marine Communities, Paleontol. J. 2009, vol. 43, pp. 1364–1367.CrossRefGoogle Scholar
  36. Rozhnov, S.V., Evolution of the Hardground Community, in The Ecology of the Cambrian Radiation, Zhuravlev, A.Yu. and Riding, R., Eds., New York: Columbia Univ. Press, 2001, pp. 238–253.Google Scholar
  37. Rozhnov, S.V., Morphogenesis and Evolution of Crinoids and Other Pelmatozoan Echinoderms in the Early Paleozoic, Paleontol. J., 2002, vol. 36,suppl.6, pp. S525–S674.Google Scholar
  38. Rozhnov, S.V. and Ivantsov, A.Yu., Problems of Identification of the Vendian Echinoderms, in Trans. Int. Conf. “The Rise and Fall of the Vendian (Ediacaran) Biota. Origin of the Modern Biosphere,” Moscow: Geos, 2007, pp. 21–27.Google Scholar
  39. Rozhnov, S.V., Morphological Consistent Patterns of Development and Evolution of Higher Taxa of Echinoderms, in Evolyutsionnye faktory formirovaniya raznoobraziya zhivotnogo mira (Evolutionary Factors of the Formation of the Diversity of the Animal World), Moscow: Izd. KMK, 2005, pp. 157–172.Google Scholar
  40. Rozhnov, S.V., The Role of Heterochrony in the Establishment of Body Plan in Higher Echinoderm Taxa, Izv. Akad. Nauk, Ser. Biol., 2009, no. 2, pp. 155–166 [Biol. Bull. (Eng. Transl.), 2009, vol., no. 2, pp. 117–127].Google Scholar
  41. Rozhnov, S.V., Symmetry and Morphogenesis: Establishment of Pentametry in Echinoderms, in Problemy evolyutsionnoi morfologii zhivotnykh (Problemts of Evolutionary Morphology of Animals), St. Petersburg: S.-Peterb. Gos. Univ., 2008, Ch.1, pp. 69–89.Google Scholar
  42. Rozhnov, S.V., Vavilov’s Law of Homologous Series and Archaic Diversity according to Paleontological Data, in Evolyutsiya biosfery i bioraznoobrazie (Evolution of the Biosphere and Biodiversity), Moscow: Tov. Nauch. Izd. KMK, 2006, pp. 134–146.Google Scholar
  43. Seilacher, A., The Nature of Vendobionts, in The Rise and Fall of the Ediacaran Biota, Vickers-Rich, P. and Komarower, P., London: Geol. Soc., 2007, pp. 387–397.Google Scholar
  44. Seilacher, A., Vendozoa: Organismic Construction in the Proterozoic Biosphere, Lethaia, 1989, vol. 22, pp. 229–239.CrossRefGoogle Scholar
  45. Seilacher, A. and Pfluger, F., From Biomats to Benthic Agriculture: a Biohistoric Revolution, in Biostabilization of Sediments, Krumbein, W.E. et al., Eds., Oldenburg: Univ. Bibliot. Informationsystem, 1994, pp. 97–105.Google Scholar
  46. Sepkoski J.J., Jr., The Ordovician Radiations: Diversification and Extinction Shown by Global Genus-Level Taxonomic Data, in 7th Int. Symp. Ordovician System “Ordovician Odyssey”, Fullerton, California: Sepm, 1995, pp. 393–396.Google Scholar
  47. Seravin, L.N. and Gerasimova, Z.P., Characteristics of the Fine Structure of Trichoplax adhaerens, Feeding on Solid Plant Substrates, Tsitologiya, 1998, vol. 30, pp. 1188–1193.Google Scholar
  48. Seravin, L.N. and Gudkov, A.V., Trichoplax adhaerens (tip Placozoa)-odno iz samykh primitivnykh mnogokletochnykh zhivotnykh (Trichoplax adhaerens (Phylum Placozoa)—One of the Most Primitive Metazoan), St. Petersburg: Tessa, 2005.Google Scholar
  49. Seravin, L.N., The Role of Oral Processes in Feeding of the True Meduza Cyanea capillata (L.), Dokl. Akad. Nauk SSSR, 1991, vol. 321, pp. 1301–1303.Google Scholar
  50. Serezhnikova, E., Bacterial Symbiosis: The Driver for Morphological Peculiarities of the Vendian Organisms?, in Abstr. Int. Geol. Congress, Oslo, 2008, p. 183.Google Scholar
  51. Serezhnikova E.A., Vendian Attachment Disks as Symbiotrophic Structures, in Trans. Int. Conf. “The Rise and Fall of the Vendian (Ediacaran) Biota. Origin of the Modern Biosphere”, MoscOw: Geos, 2007, Pp. 28–33.Google Scholar
  52. Slyusarev, G.S., Phylum Orthonectida: Morphology, Biology, and Relationships to Other Multicellular Animals, Zhurn. Obshch. Biol., 2008, vol. 69, no. 6, pp. 403–427.Google Scholar
  53. Sokolov, B.S., Vendian Complex and the Problem of the Boundary between Precambrian and Paleozoic Group, in Geologiya dokembriya (Precambrian Geology), Moscow: Nauka, 1964, pp. 135–150.Google Scholar
  54. Springer, F. American Silurian Crinoids, Washington, DC: Smithson. Inst. Publ., 1926.Google Scholar
  55. Valentine, J.W., On the Origin of Phyla, Chicago: Univ. Press, 2004.Google Scholar
  56. Wenderoth, H., Transepithelial Cytophagy by Trichoplax adyaerens F.E. Schulze (Placozoa) Feeding on Yeast, Z. Naturforsch., 1986, vol. 41, pp. 343–347.Google Scholar
  57. Xian-Guang, H., Aldridge, R.J., Bergstrom, J., et al., The Cambrian Fossils of Chengjiang, China. The Flowering of Early Animal Life, Oxford: Blackwell Publ., 2004.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Borissiak Paleontological InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations