Russian Journal of Developmental Biology

, Volume 39, Issue 6, pp 325–336

Pluripotent stem cells: Maintenance of genetic and epigenetic stability and prospects of cell technologies

Reviews

Abstract

Permanent lines of pluripotent stem cells can be obtained from humans and monkeys using different techniques and from different sources—inner cell mass of the blastocyst, primary germ cells, parthenogenetic oocytes, and mature spermatogonia—as well as by transgenic modification of various adult somatic cells. Despite different origin, all pluripotent lines demonstrate considerable similarity of the major biological properties: active self-renewal and differentiation into various somatic and germ cells in vitro and in vivo, similar gene expression profiles, and similar cell cycle structure. Ten years of intense studies on the stability of different human and monkey embryonic stem cells demonstrated that, irrespective of their origin, long-term in vitro cultures lead to the accumulation of chromosomal and gene mutations as well as epigenetic changes that can cause oncogenic transformation of cells. This review summarizes the research data on the genetic and epigenetic stability of different lines of pluripotent stem cells after long-term in vitro culture. These data were used to analyze possible factors of the genome and epigenome instability in pluripotent lines. The prospects of using pluripotent stem cells of different origin in cell therapy and pharmacological studies were considered.

Key words

embryonic stem cells cloning pluripotent stem cells chromosomal abnormalities epigenetic changes differentiation DNA methylation cell cycle carcinogenesis cell therapy primates 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adewumi, O., Aflatoonian, B., Ahrlund-Richter, L., et al., Characterization of Human Embryonic Stem Cell Lines by the International Stem Cell Initiative, Nat. Biotech., 2007, vol. 25, pp. 803–816.CrossRefGoogle Scholar
  2. Allegrucci, C. and Young, L.E., Differences between Human Embryonic Stem Cell Lines, Hum. Repr. Update, 2007, vol. 13, no. 2, pp. 103–120.CrossRefGoogle Scholar
  3. Andrews, P.W., From Teratocarcinomas to Embryonic Stem Cells, Philos. Trans. R. Soc. Lond. B. Biol Sci., 2002, vol. 357, pp. 405–417.PubMedCrossRefGoogle Scholar
  4. Beattie, G.M., Lopez, A.D., Bucay, N., et al., Activin A Maintains Pluripotency of Human Embryonic Stem Cells in the Absence of Feeder Layers, Stem Cells, 2005, vol. 23, pp. 489–495.PubMedCrossRefGoogle Scholar
  5. Becker, K.A., Ghule, P.N., Therrien, J.A., et al., Self-Renewal of Human Embryonic Stem Cells Is Supported by a Shortened G1 Cell Cycle Phase, J. Cell Physiol., 2006, vol. 209, pp. 883–893.PubMedCrossRefGoogle Scholar
  6. Becker, K.A., Stein, J.L., Lian, J.B., et al., Establishment of Histone Gene Regulation and Cell Cycle Checkpoint Control in Human Embryonic Stem Cells, J. High Resolut. Chromatogr. Chromatogr. Commun., 2007, vol. 210, pp. 517–526.Google Scholar
  7. Bhattacharia, B., Miura, T., Brandenberger, R., et al., Gene Expression in Human Embryonic Stem Cell Lines: Unique Molecular Signature, Blood, 2004, vol. 103, no. 8, pp. 2956–2961.CrossRefGoogle Scholar
  8. Bigdeli, N., Andersson, M., Strehl, R., et al., Adaptation of Human Embryonic Stem Cells to Feeder-Free and Matrix-Free Culture Conditions Directly on Plastic Surfaces, J. Biotechnol., 2008, vol. 133, no. 1, pp. 146–153.PubMedCrossRefGoogle Scholar
  9. Brandenberger, R., Khrebtukova, I., Thies, R.S., et al., MPSS Profiling of Human Embryonic Stem Cells, BMC Devel. Biol., 2004, vol. 4, pp. 1–16.CrossRefGoogle Scholar
  10. Brimble, S.N., Zeng, X., Weiler, D.A., et al., Karyotypic Stability, Genotyping, Differentiation, Feeder-Free Maintenance, and Gene Expression Sampling in Three Human Embryonic Stem Cell Lines Derived prior to August 9, 2001, Stem Cells Devel., 2004, vol. 13, pp. 585–597.CrossRefGoogle Scholar
  11. Burbee, D.G., Forgacs, E., Zochbauer-Muller, S., et al., Epigenetic Inactivation of RASSF1A in Lung and Breast Cancers and Malignant Phenotype Suppression, J. Natl. Cancer Inst., 2001, vol. 93, pp. 691–699.PubMedCrossRefGoogle Scholar
  12. Burdon, T., Smith, A., and Savatier, P., Signaling, Cell Cycle and Pluripotency in Embryonic Stem Cells, Trends Cell Biol., 2002, vol. 12, pp. 432–438.PubMedCrossRefGoogle Scholar
  13. Buzzard, J.J., Gough, N.M., Crook, J.M., and Colman, A., Karyotype of Human ES Cells during Extended Culture, Nat. Biotechnol., 2004, vol. 22, pp. 381–382.PubMedCrossRefGoogle Scholar
  14. Byrne, J.A., Pedersen, D.A., Clepper, L.L., et al., Producing Primate Embryonic Stem Cells by Somatic Cell Nuclear Transfer, Nature, 2007, vol. 450, pp. 497–505.PubMedCrossRefGoogle Scholar
  15. Caisander, G., Park, H., Frej, K., et al., Chromosomal Integrity Maintained in Five Human Embryonic Stem Cell Lines after Prolonged in Vitro Culture, Chromosome Res., 2006, vol. 14, pp. 131–137.PubMedCrossRefGoogle Scholar
  16. Cibelli, J.B., Grant, K.A., Chapman, K.B., et al., Parthenogenetic Stem Cells in Nonhuman Primates, Science, 2002, vol. 295, p. 819.PubMedCrossRefGoogle Scholar
  17. Clark, A.T., Rodrigues, R.T., Bodnar, M.S., et al., Human STELLAR, NANOG, and GDF3 Genes Are Expressed in Pluripotent Cells and Map to Chromosome 12p13, A Hotspot for Teratocarcinoma, Stem Cells, 2004, vol. 22, pp. 169–179.PubMedCrossRefGoogle Scholar
  18. Cowan, C.A., Atienza, J., Melton, D.A., and Eggan, K., Nuclear Reprogramming of Somatic Cells after Fusion with Human Embryonic Stem Cells, Science, 2005, vol. 309, pp. 1369–1373.PubMedCrossRefGoogle Scholar
  19. Cowan, C.A., Klimanskaya, I., McMahon, J., et al., Derivation of Embryonic Stem-Cell Lines from Human Blastocysts, N. Engl. J. Med., 2004, vol. 50, pp. 1353–1356.CrossRefGoogle Scholar
  20. Cui, H., Onyango, P., Brandenburg, S., et al., Loss of Imprinting in Colorectal Cancer Linked to Hypomethylation of H19 and IGF2, Cancer Res., 2002, vol. 62, pp. 6442–6446.PubMedGoogle Scholar
  21. Dighe, V., Clepper, L., Pedersen, D., et al., Heterozygous Embryonic Stem Cell Lines Derived from Nonhuman Primate Parthenotes, Stem Cells, 2008, pp. 756–766.Google Scholar
  22. Draper, J.S., Smith, K., Gokhale, P., et al., Recurrent Gain of Chromosomes 17q and 12 in Cultured Human Embryonic Stem Cells, Nat. Biotechnol., 2004, vol. 22, pp. 53–54.PubMedCrossRefGoogle Scholar
  23. Enver, T., Soneji, S., Joshi, C., et al., Cellular Differentiation Hierarchies in Normal and Culture-Adapted Human Embryonic Stem Cells, Hum. Mol. Genet., 2005, vol. 14, pp. 3129–3140.PubMedCrossRefGoogle Scholar
  24. Fang, D., Leishear, K., Nguyen, T.K., et al., Defining the Conditions for the Generation of Melocytes from Human Embryonic Stem Cells, Stem Cells, 2006, vol. 24, pp. 1668–1677.PubMedCrossRefGoogle Scholar
  25. Feinberg, A.P. and Tycko, B., The History of Cancer Epigenetics, Nat. Rev. Cancer, 2004, vol. 4, pp. 143–153.PubMedCrossRefGoogle Scholar
  26. Fluckiger, A.C., Marcy, G., Marchand, M., et al., Cell Cycle Features of Primate Embryonic Stem Cells, Stem Cells, 2006, vol. 24, pp. 547–556.PubMedCrossRefGoogle Scholar
  27. French, A.J., Adams, C.A., Anderson, L.S., et al., Development of Human Cloned Blastocysts Following Somatic Nuclear Transfer (SCNT) with Adult Fibroblast, J. High Resolut. Chromatogr. Chromatogr. Commun., 2008, vol. 26, pp. 485–493.Google Scholar
  28. Fujimoto, A., Mitalipov, S.M., Clepper, L.L., and Wolf, D.P., Development of a Monkey Model for the Study of Primate Genomic Imprinting, Mol. Hum. Reprod., 2005, vol. 11, pp. 413–422.PubMedCrossRefGoogle Scholar
  29. Gerami-Naini, B., Dovzhenk, O.V., Durning, M., et al., Trophoblast Differentiation in Embryoid Bodies Derived from Human Embryonic Stem Cells, Endocrinology, 2004, vol. 145, pp. 1517–1524.PubMedCrossRefGoogle Scholar
  30. Gordeeva, O.F., Pluripotent Cells in Embryogenesis and in Teratoma Formation, in Stem Cells and Cancer, Parsons, D.W., Wd., New York: Nova Sci., 2007, pp. 62–85.Google Scholar
  31. Gordeeva, O.F., Krasnikova, N.Yu., Larionova, A.V., et al., Analysis of Expression of Genes Specific for Pluripotent and Primordial Germ Cells in Human and Mouse Embryonic Stem Cell Lines, Dokl. Akad. Nauk, 2006, vol. 406, no. 6, pp. 835–839.Google Scholar
  32. Hanson, C. and Caisander, G., Human Embryonic Stem Cells and Chromosome Stability, Apmis, 2005, vol. 113, pp. 751–755.PubMedCrossRefGoogle Scholar
  33. Heins, N., Englund, M.C., Sjoblom, C., et al., Derivation, Characterization, and Differentiation of Human Embryonic Stem Cells, Stem Cells, 2004, vol. 22, pp. 367–376.PubMedCrossRefGoogle Scholar
  34. Hernandez, L., Kozlov, S., Piras, G., and Stewart, C.L., Paternal and Maternal Genomes Confer Opposite Effects on Proliferation, Cell-Cycle Length, Senescence, and Tumor Formation, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 13344–13349.PubMedCrossRefGoogle Scholar
  35. Herszfeld, D., Wolvetang, E., Langton-Bunker, E., et al., CD30 Is a Survival Factor and a Biomarker for Tranformed Human Pluripotent Stem Cells, Nat. Biotechnol., 2006, vol. 24, pp. 351–357.PubMedCrossRefGoogle Scholar
  36. Hoffman, L.M., Hall, L., Batten, J.L., et al., X-Inactivation Status Varies in Human Embryonic Stem Cell Lines, Stem Cells, 2005, vol. 23, pp. 1468–1478.PubMedCrossRefGoogle Scholar
  37. Hovatta, O., Mikkola, M., Gertow, K., et al., A Culture System Using Human Foreskin Fibroblasts as Feeder Cells Allows Production of Human Embryonic Stem Cells, Hum. Reprod., 2003, vol. 18, pp. 1404–1409.PubMedCrossRefGoogle Scholar
  38. Hsiao, L.L., Dangond, F., Yoshida, T., et al., A Compendium of Gene Expression in Normal Human Tissues, Physiol Genomics, 2001, vol. 7, pp. 97–104.PubMedGoogle Scholar
  39. Inzunza, J., Sahlen, S., Holmberg, K., et al., Comparative Genomic Hybridization and Karyotyping of Human Embryonic Stem Cells Reveals the Occurence of An Isodicentric X Chromosome after Long-Term Cultivation, Mol. Hum. Reprod., 2004, vol. 10, pp. 461–466.PubMedCrossRefGoogle Scholar
  40. Jaenisch, R. and Bird, A., Epigenetic Regulation of Gene Expression: How the Genome Integrates Intrinsic and Environmental Signals, Nat. Genet., 2003, vol. 33, pp. 245–254.PubMedCrossRefGoogle Scholar
  41. Kim, S.J., Lee, J.E., Park, J.H., et al., Efficient Derivation of New Human Embryonic Stem Cell Lines, Mol. Cells, 2005, vol. 19, pp. 46–53.PubMedGoogle Scholar
  42. Klimanskaya, I., Chung, Y., Becker, S., et al., Human Embryonic Stem Cell Lines Derived from Single Blastomeres, Nature, 2006, vol. 444, no. 7118, pp. 481–485.PubMedCrossRefGoogle Scholar
  43. Lakshmipathy, U., Pelacho, B., Sudo, K., et al., Efficient Transfection of Embryonic and Adult Stem Cells, Stem Cells, 2004, vol. 22, pp. 531–543.PubMedCrossRefGoogle Scholar
  44. Lin, G., OuYang, Q., Zhou, X., et al., A Highly Homozygous and Parthenogenetic Human Embryonic Stem Cell Line Derived from a One-Pronuclear Oocyte Following in Vitro Fertilization Procedure, Cell Res, 2007, vol. 17, no. 12, pp. 999–1007.PubMedCrossRefGoogle Scholar
  45. Lin, T., Chao, C., Saito, S., et al., P53 Induces Differentiation of Mouse Embryonic Stem Cells by Suppressing Nanog Expression, Nat. Cell Biol., 2005, vol. 7, pp. 165–171.PubMedCrossRefGoogle Scholar
  46. Maherali, N., Sridharan, R., Xie, W., et al., Directly Reprogrammed Fibroblasts Show Global Epigenetic Remodelling and Widespread Tissue Contribution, Cell Stem Cell, 2007, vol. 1, pp. 55–70.PubMedCrossRefGoogle Scholar
  47. Maitra, A., Arking, D.E., Shivapurkar, N., et al., Genomic Alterations in Cultured Human Embryonic Stem Cells, Nat. Genet., 2005, vol. 37, pp. 1099–1103.PubMedCrossRefGoogle Scholar
  48. Mitalipov, S., Clepper, L., Sritanaudomchai, H., et al., Methylation Status of Imprinting Centers for H19/IGF2 and SNURF/SNRPN in Primate Embryonic Stem Cells, J. High Resolut. Chromatogr. Chromatogr. Commun., 2007, vol. 25, pp. 581–588.Google Scholar
  49. Mitalipov, S., Kuo, H.C., Byrne, J., et al., Isolation and Characterization of Novel Rhesus Monkey Embryonic Stem Cell Lines, Stem Cells, 2006, vol. 24, pp. 2177–2186.PubMedCrossRefGoogle Scholar
  50. Mitalipova, M.M., Rao, R.R., Hoyer, D.M., et al., Preserving the Genetic Integrity of Human Embryonic Stem Cells, Nat. Biotechnol., 005, vol. 23, pp. 19–20.Google Scholar
  51. Miura, T., Luo, Y., Khrebtukova, I., et al., Monitoring Early Differentiation Events in Human Embryonic Stem Cells by Massively Parallel Signature Sequencing and Expressed Sequence Tag Scan, Stem Cells Devel., 2004, vol. 13, pp. 694–715.CrossRefGoogle Scholar
  52. Miura, M., Miura, Y., Padilla-Nash, H.M., et al., Accumulated Chromosomal Instability in Murine Bone Marrow Mesenchymal Stem Cells Leads to Malignant Transformation, Stem Cells, 2005, vol. 24, pp. 1095–1103.PubMedCrossRefGoogle Scholar
  53. Nakagawa, H., Chadwick, R.B., Peltomaki, P., et al., Loss of Imprinting of the Insulin-Like Growth Factor II Gene Occurs by Biallelic Methylation in a Core Region of H19-Associated CTCF-Binding Sites in Colorectal Cancer, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 591–596.PubMedCrossRefGoogle Scholar
  54. Nakagawa, M., Koyanagi, M., Tanabe, K., et al., Generation of Induced Pluripotent Stem Cells without Myc from Mouse and Human Fibroblasts, Nat. Biotech., 2008, vol. 26, pp. 101–106.CrossRefGoogle Scholar
  55. Nakatsuji, N. and Suemori, H., Embryonic Stem Cell Lines of Nonhuman Primates, Sci. W. J., 2002, vol. 2, pp. 1762–1773.Google Scholar
  56. Nicholls, R.D. and Knepper, J.L., Genome Organization, Function, and Imprinting in Prader-Willi and Angelman Syndromes, Annu. Rev. Genomics Hum. Genet., 2001, vol. 2, pp. 153–175.PubMedCrossRefGoogle Scholar
  57. Nonomura, N., Miki, T., Nishimura, K., et al., Altered Imprinting of the H19 and Insulin-Like Growth Factor II Genes in Testicular Tumors, J. Urol., 1997, vol. 157, pp. 1977–1979.PubMedCrossRefGoogle Scholar
  58. Ohm, J.E., McGarvey, K.M., Yu, X., et al., A Stem Cell-Like Chromatin Pattern May Predispose Tumor Suppressor Genes to DNA Hypermethylation and Heritable Silencing, Nat. Genet., 2007, vol. 39, pp. 237–242.PubMedCrossRefGoogle Scholar
  59. Okano, M., Bell, D.W., Haber, D.A., and Li, E., DNA Methyltransferases Dnmt3a and Dnmt3b Are Essential for de Novo Methylation and Mammalian Development, Cell, 1999, vol. 99, no. 3, pp. 247–257.PubMedCrossRefGoogle Scholar
  60. Okita, K., Ichisaka, T., and Yamanaka, S., Generation of Germ-Line Competent Induced Pluripotent Stem Cells, Nature, 2007, vol. 448, pp. 313–317.PubMedCrossRefGoogle Scholar
  61. Onyango, P., Jiang, S., Uejima, H., et al., Monoallelic Expression and Methylation of Imprinted Genes in Human and Mouse Embryonic Germ Cell Lineages, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 10599–10604.PubMedCrossRefGoogle Scholar
  62. Plaia, T.W., Josephson, R., Liu, Y., et al., Characterization of a New NIH Registeres Variant Human Embryonic Stem Cell Line BG01V: A Tool for Human Embryonic Stem Cell Research, Stem Cells, 2005, vol. 24, pp. 531–546.PubMedCrossRefGoogle Scholar
  63. Przyborski, S.A., Differentiation of Human Embryonic Stem Cells after Transplantation in Immune-Deficient Mice, J. High Resolut. Chromatogr. Chromatogr. Commun., 2005, vol. 2, pp. 1242–1250.Google Scholar
  64. Rajesh, D., Chinnasamy, N.M., Mitalipov, S.M., et al., Differential Requirements for Hematopoietic Commitment between Human and Rhesus Embryonic Sem Cells, J. High Resolut. Chromatogr. Chromatogr. Commun., 2007, vol. 25, pp. 490–499.Google Scholar
  65. Rao, R.R., Calhoun, J.D., Qin, X., et al., Comparative Transcriptional Profiling of Two Human Embryonic Stem Cell Lines, Biotech. Bioengin., 2004, vol. 88, no. 3, pp. 273–286.CrossRefGoogle Scholar
  66. Revazova, E.S., Turovets, N.A., Kochetkova, O.D., et al., Patient-Specific Stem Cell Lines Derived from Human Parthenogenetic Blastocysts, Cloning Stem Cells, 2007, vol. 9, no. 3, pp. 432–449.PubMedCrossRefGoogle Scholar
  67. Rosler, E.S., Fisk, G.J., Ares, X., et al., Long-Term Culture of Human Embryonic Stem Cells in Feeder-Free Conditions, Devel. Dyn., 2004, vol. 229, pp. 259–274.CrossRefGoogle Scholar
  68. Rugg-Gunn, P.J., Ferguson-Smith, A.C., and Pedersen, R.A., Epigenetic Status of Human Embryonic Stem Cells, Nat. Genet., 2005, vol. 37, pp. 585–587.PubMedCrossRefGoogle Scholar
  69. Saretzki, G., Armstrong, L., Leake, A., et al., Stress Defense in Murine Embryonic Stem Cells Is Superior to That of Various Differentiated Murine Cells, Stem Cells, 2004, vol. 22, pp. 962–971.PubMedCrossRefGoogle Scholar
  70. Saretzki, G., Walter, T., Atkinson, S., et al., Downregulation of Multiple Stress Defense Mechanisms during Differentiation of Human Embryonic Stem Cells, Stem Cells, 2008, vol. 26, pp. 455–464.PubMedCrossRefGoogle Scholar
  71. Savatier, P., Huang, S., Szekely, L., et al., Contrasting Patterns of Retinoblastoma Protein Expression in Mouse Embryonic Stem Cells and Embryonic Fibroblasts, Oncogene, 1994, vol. 9, pp. 809–818.PubMedGoogle Scholar
  72. Savatier, P. and Lapillonne, H., Grunsven Van, London: A. et al. Withdrawal of Differentiation Inhibitory Activity/Leukemia Inhibitory Factor Up-regulates D Type Cyclins and Cyclin-Dependent Kinase Inhibitors in Mouse Embryonic Stem Cells, Oncogene, 1996, vol. 12, pp. 309–322.PubMedGoogle Scholar
  73. Schwanke, K., Wunderlich, S., Reppel, M., et al., Generation and Characterization of Functional Cardiomyocytes from Rhesus Monkey Embryonic Stem Cells, Stem Cells, 2006, vol. 24, pp. 1423–1432.PubMedCrossRefGoogle Scholar
  74. Secombe, J., Pierce, S.B., and Eisenman, R.N., Myc: A Weapon of Mass Destruction, Cell, 2004, vol. 117, pp. 3–156.CrossRefGoogle Scholar
  75. Shamblott, M.J., Axelman, J., Wang, S., et al., Derivation of Pluripotent Stem Cells from Cultured Human Primordial Germ Cells, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 13726–13731.PubMedCrossRefGoogle Scholar
  76. Shin, S., Mitalipova, M., Noggle, S., et al., Long-Term Proliferation of Human Embryonic Stem Cell-Derived Neuroepithelial Cells Using Defined Adherent Culture Conditions, Stem Cells, 2006, vol. 24, pp. 125–138.PubMedCrossRefGoogle Scholar
  77. Skotheim, R.I., Monni, O., Mousses, S., et al., New Insights into Testicular Germ Cell Tumorigenesis from Gene Expression Profiling, Cancer Res., 2002, vol. 62, pp. 2359–2364.PubMedGoogle Scholar
  78. Skottman, H., Mikkola, M., Lundin, K., et al., Gene Expression Signatures of Seven Individual Human Embryonic Stem Cell Lines, Stem Cells, 2005, vol. 23, pp. 1343–1356.PubMedCrossRefGoogle Scholar
  79. Soejima, H. and Wagstaff, J., Imprinting Centers, Chromatin Structure, and Disease, J. Cell Biochem, 2005, vol. 95, pp. 226–233.PubMedCrossRefGoogle Scholar
  80. Sperger, J.M., Chen, X., Draper, J.S., et al., Gene Expression Patterns in Human Embryonic Stem Cells and Human Pluripotent Germ Cell Tumors, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 13350–13355.PubMedCrossRefGoogle Scholar
  81. Strelchenko, N., Verlinsky, O., Kukharenko, V., and Verlinsky, Y., Morula-Derived Human Embryonic Stem Cells, Reprod. Biomed. Online, 2004, vol. 9, no. 6, pp. 623–629.PubMedCrossRefGoogle Scholar
  82. Suemori, H., Tada, T., Torii, R., et al., Establishment of Embryonic Stem Cell Lines from Cynomolgus Monkey Blastocysts Produced by IVF Or ICSI, Devel. Dyn., 2001, vol. 222, pp. 273–279.CrossRefGoogle Scholar
  83. Sun, B.W., Yang, A.C., Feng, Y., et al., Temporal and Parental-Specific Expression of Imprinted Genes in a Newly Derived Chinese Human Embryonic Stem Cell Line and Embryoid Bodies, Hum. Mol. Genet., 2006, vol. 15, pp. 65–75.PubMedCrossRefGoogle Scholar
  84. Szabo, P.E. and Mann, J.R., Biallelic Expression of Imprinted Genes in the Mouse Germ Line: Implications for Erasure, Establishment, and Mechanisms of Genomic Imprinting, Genes Devel., 1995, vol. 9, pp. 1857–1868.PubMedCrossRefGoogle Scholar
  85. Takahashi, K. and Yamanaka, S., Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors, Cell, 2006, vol. 126, pp. 663–676.PubMedCrossRefGoogle Scholar
  86. Takahashi, K., Tanabe, K., Ohnuki, V., et al., Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors, J. High Resolut. Chromatogr. Chromatogr. Commun., 2007, vol. 131, pp. 861–872.Google Scholar
  87. Takai, D., Gonzales, F.A., Tsai, Y.C., et al., Large Scale Mapping of Methylcytosines in CTCF-Binding Sites in the Human H19 Promoter and Aberrant Hypomethylation in Human Bladder Cancer, Hum. Mol. Genet., 2001, vol. 10, pp. 2619–2626.PubMedCrossRefGoogle Scholar
  88. Taylor, R.A., Cowin, P.A., Cunha, G.R., et al., Formation of Human Prostate Tissue from Embryomic Stem Cells, Nat. Methods, 2006, vol. 3, pp. 179–181.PubMedCrossRefGoogle Scholar
  89. Thomson, J.A., Kalishman, J., Golos, T.G., et al., Isolation of a Primate Embryonic Stem Cell Line, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 7844–7848.PubMedCrossRefGoogle Scholar
  90. Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., et al., Embryonic Stem Cell Lines Derived from Human Blastocysts, Science, 1998, vol. 282, pp. 1145–1147.PubMedCrossRefGoogle Scholar
  91. Thomson, A., Wojtacha, D., Hewitt, Z., et al., Human Embryonic Stem Cells Passaged Using Enzymatic Methods Retain a Normal Karyotype and Express CD30, Cloning Stem Cells, 2008, vol. 10, no. 1, pp. 89–106.PubMedCrossRefGoogle Scholar
  92. Ulaner, G.A., Vu, T.H., Li, T., et al., Loss of Imprinting of IGF2 and H19 in Osteosarcoma Is Accompanied by Reciprocal Methylation Changes of a CTCF-Binding Site, Hum. Mol. Genet., 2003, vol. 12, pp. 535–549.PubMedCrossRefGoogle Scholar
  93. Vallier, L., Alexander, M., and Pedersen, R.A., Activin/Nodal and FGF Pathways Cooperate to Maintain Pluripotency of Human Embryonic Stem Cells, J. Cell Sci., 2005, vol. 118, pp. 4495–4509.PubMedCrossRefGoogle Scholar
  94. Van Gurp, R.J., Oosterhuis, J.W., Kalscheuer, V., et al., Biallelic Expression of the H19 and IGF2 Genes in Human Testicular Germ Cell Tumors, J. Natl. Cancer Inst., 1994, vol. 86, pp. 1070–1075.PubMedCrossRefGoogle Scholar
  95. Vrana, K.E., Hipp, J.D., Goss, A.M., et al., Nonhuman Primate Parthenogenetic Stem Cells, Proc. Natl. Acad. Sci. USA, 2003, vol. 100,suppl. 1, pp. 11911–11916.PubMedCrossRefGoogle Scholar
  96. Wakayama, T., Perry, A.C., Zuccotti, M., et al., Full-Term Development of Mice from Enucleated Oocytes Injected with Cumulus Cell Nuclei, Nature, 1998, vol. 394, pp. 369–374.PubMedCrossRefGoogle Scholar
  97. Wakayama, S., Ohta, H., Kishigami, S., et al., Establishment of Male and Female Nuclear Transfer Embryonic Stem Cell Lines from Different Mouse Strains and Tissues, Biol. Reprod., 2005, vol. 72, pp. 932–936.PubMedCrossRefGoogle Scholar
  98. Weksberg, R., Smith, A.C., Squire, J., and Sadowski, P., Beckwith-Wiedemann Syndrome Demonstrates a Role for Epigenetic Control of Normal Development, Hum. Mol. Genet., 2003, vol. 12, pp. 61–68.CrossRefGoogle Scholar
  99. Westermann, F. and Schwab, M., Genetic Parameters of Neuroblastomas, Cancer Lett., 2002, vol. 184, pp. 127–147.PubMedCrossRefGoogle Scholar
  100. Xu, C., Inokuma, M.S., Denham, J., et al., Feeder-Free Growth of Undifferentiated Human Embryonic Stem Cells, Nat. Biotechnol., 2001, vol. 19, no. 10, pp. 971–974.PubMedCrossRefGoogle Scholar
  101. Xu, C., Jiang, J., Sottile, V., et al., Immortalized Fibroblast-Like Cells Derived from Human Embryonic Stem Cells Support Undifferentiated Cell Growth, Stem Cells, 2004, vol. 22, pp. 972–980.PubMedCrossRefGoogle Scholar
  102. Xu, C., Rosler, E., Jiang, J., et al., Basic Fibroblast Growth Factor Supports Undifferentiated Human Embryonic Stem Cell Growth without Conditioned Medium, J. High Resolut. Chromatogr. Chromatogr. Commun., 2005, vol. 23, pp. 315–323.Google Scholar
  103. Xu, G.L., Bestor, T.H., Bourc’his, D., et al., Chromosome Instability and Immunodeficiency Syndrome Caused by Mutations in a DNA Methyltransferase Gene, Nature, 1999, vol. 402, pp. 187–191.PubMedCrossRefGoogle Scholar
  104. Yu, J., Vodyanik, M., Smuga-Otoo, K., et al., Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells, Science, 2007, vol. 318, pp. 1917–1920.PubMedCrossRefGoogle Scholar
  105. Zeng, X., Human Embryonic Stem Cells: Mechanisms to Escape Replicative Senescence?, Stem Cell Rev, 2007, vol. 3, pp. 270–279.PubMedCrossRefGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  1. 1.Kol’tsov Institute of Developmental BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Oregon National Primate Research CenterOregon Health and Science UniversityBeavertonUSA

Personalised recommendations