Russian Journal of Developmental Biology

, Volume 38, Issue 6, pp 374–382 | Cite as

Mathematical model of auxin distribution in the plant root

  • V. A. Likhoshvai
  • N. A. Omel’yanchuk
  • V. V. Mironova
  • S. I. Fadeev
  • E. D. Mjolsness
  • N. A. Kolchanov
Current Problems of Developmental Biology

Abstract

Auxin regulation of plant growth and development is mediated by controlled distribution of this hormone and dose-dependent mechanisms of its action. A mathematical model is proposed, which describes auxin distribution in the cell array along the root longitudinal axis in Arabidopsis thaliana. The model qualitatively simulates auxin distribution over the longitudinal axis in intact roots, changes in this distribution at decreased auxin transport rates, and restoration of the auxin distribution pattern with subsequent establishment of new root meristem in the course of root regeneration after the ablation of its tip. The model shows the presence of different auxin distribution patterns over the longitudinal root axis and suggests possible scenarios for root growth and lateral root formation. Biological interpretation of different regimes of model behavior is presented.

Key words

Arabidopsis thaliana development of plant root auxin transport mathematical model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benfey, P.N. and Scheres, B., Root Development, Curr. Biol., 2000, vol. 10, no. 22, pp. 813–815.CrossRefGoogle Scholar
  2. Bianco, C., Imperlini, E., Calogero, R., et al., Indole-3-Acetic Acid Regulates the Central Metabolic Pathways in Escherichia coli, Microbiology, 2006, vol. 152, no. 8, pp. 2421–2431.PubMedCrossRefGoogle Scholar
  3. Blilou, I., Xu, J., Wildwater, M., et al., The PIN Auxin Efflux Facilitator Network Controls Growth and Patterning in Arabidopsis Roots, Nature, 2005, vol. 433, pp. 39–44.PubMedCrossRefGoogle Scholar
  4. Casimiro, I., Beeckman, T., Graham, N., et al., Dissecting Arabidopsis Lateral Root Development, Trends Plant Sci., 2003, vol. 8, no. 4, pp. 165–171.PubMedCrossRefGoogle Scholar
  5. Cooke, T.J., Poli, D., Sztein, A.E., et al., Evolutionary Patterns in Auxin Action, Plant. Mol. Biol., 2002, vol. 49, pp. 319–338.PubMedCrossRefGoogle Scholar
  6. Costacurta, A. and Vanderleyden, J., Synthesis of Phytohormones by Plant-Associated Bacteria, Crit. Rev. Microbiol., 1995, vol. 21, no. 1, pp. 1–18.PubMedCrossRefGoogle Scholar
  7. De Smet, I., Tetsumura, T., De Rybel, B., et al., Auxin-Dependent Regulation of Lateral Root Positioning in the Basal Meristem of Arabidopsis, Development, 2007, vol. 134, no. 4, pp. 681–690.PubMedCrossRefGoogle Scholar
  8. Dharmasiri, N. and Estelle, M., Auxin Signaling and Regulated Protein Degradation, Trends Plant Sci., 2004, vol. 9, no. 6, pp. 302–308.PubMedCrossRefGoogle Scholar
  9. Dolan, L., Janmaat, K., Willemsen, V., et al., Cellular Organisation of the Arabidopsis thaliana Root, Development, 1993, vol. 119, no. 1, pp. 71–84.PubMedGoogle Scholar
  10. Fadeev, S.I., Pokrovskaya, S.A., Berezin, A.Yu., et al., Paket programm STER dlya chislennogo issledovaniya sistem nelineinykh uravnenii i avtonomnykh sistem obshchego vida (Software Package STER for Systemic Studies of Systems of Nonlinear Equations and Autonomic Systems of General Form), Novosibirsk: Izd-vo NGU, 1998.Google Scholar
  11. Friml, J., Vieten, A., Sauer, M., et al., Efflux-Dependent Auxin Gradients Establish the Apical-Basal Axis of Arabidopsis, Nature, 2003, vol. 426, pp. 147–153.PubMedCrossRefGoogle Scholar
  12. Gear, C.W., The Automatic Integration of Ordinary Differential Equations, Comm. Ass. Comput. Mach., 1971, vol. 14, no. 1, pp. 176–190.Google Scholar
  13. Geisler, M. and Murphy, A.S., The ABC of Auxin Transport: the Role of P-Glycoproteins in Plant Development, FEBS Lett., 2006, vol. 580, no. 4, pp. 1094–1102.PubMedCrossRefGoogle Scholar
  14. Geldner, N., Friml, J., Stierhof, Y.-D., et al., Auxin Transport Inhibitors Block PIN1 Cycling and Vesicle Trafficking, Nature, 2001, vol. 413, pp. 425–428.PubMedCrossRefGoogle Scholar
  15. Jiang, K. and Feldman, J.L., Regulation of Root Apical Meristem Development, Annu. Rev. Cell Devel. Biol., 2005, vol. 21, pp. 485–509.CrossRefGoogle Scholar
  16. Kramer, E.M. and Bennett, M.J., Auxin Transport: a Field in Flux, Trends Plant Sci., 2006, vol. 11, no. 8, pp. 382–386.PubMedCrossRefGoogle Scholar
  17. Ljung, K., Hull, A.K., Celenza, J., et al., Sites and Regulation of Auxin Biosynthesis in Arabidopsis Roots, Plant Cell, 2005, vol. 17, no. 4, pp. 1090–1104.PubMedCrossRefGoogle Scholar
  18. Paciorek, T., Zazimalova, E., Ruthardt, N., et al., Auxin Inhibits Endocytosis and Promotes Its Own Efflux from Cells, Nature, 2005, vol. 435, pp. 1251–1256.PubMedCrossRefGoogle Scholar
  19. Petrasek, J., Mravec, J., Bouchard, R., et al., PIN Proteins Perform a Rate-Limiting Function in Cellular Auxin Efflux, Science, 2006, vol. 312, no. 5775, pp. 914–918.PubMedCrossRefGoogle Scholar
  20. Prusty, R., Grisafi, P., and Fink, G.R., The Plant Hormone Indoleacetic Acid Induces Invasive Growth in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, no. 12, pp. 4153–4157.PubMedCrossRefGoogle Scholar
  21. Sabatini, S., Beis, D., Wolkenfelt, H., et al., An Auxin-Dependent Distal Organizer of Pattern and Polarity in the Arabidopsis Root, Cell, 1999, vol. 99, no. 5, pp. 463–472.PubMedCrossRefGoogle Scholar
  22. Sauer, M., Balla, J., Luschnig, C., et al., Canalization of Auxin Flow by Aux/IAA-ARF-Dependent Feedback Regulation of PIN Polarity, Genes Devel., 2006, vol. 20, no. 20, pp. 2902–2911.PubMedCrossRefGoogle Scholar
  23. Sieberer, T., Seifert, G.J., Hauser, M.T., et al., Post-Transcriptional Control of the Arabidopsis Auxin Efflux Carrier EIR1 Requires AXR1, Curr. Biol., 2000, vol. 10, no. 24, pp. 1595–1598.PubMedCrossRefGoogle Scholar
  24. Swarup, R., Friml, J., Marchant, A., et al., Localization of the Auxin Permease AUX1 Suggests Two Functionally Distinct Hormone Transport Pathways Operate in the Arabidopsis Root Apex, Genes Devel., 2001, vol. 15, no. 20, pp. 2648–2653.PubMedCrossRefGoogle Scholar
  25. Ulmasov, T., Hagen, G., and Guilfoyle, T.J., Dimerization and DNA Binding of Auxin Response Factors, Plant J., 1999, vol. 19, no. 3, pp. 309–319.PubMedCrossRefGoogle Scholar
  26. Vieten, A., Vanneste, S., Wisniewska, J., et al., Functional Redundancy of PIN Proteins Is Accompanied by Auxindependent Cross-Regulation of PIN Expression, Development, 2005, vol. 132, no. 20, pp. 4521–4531.PubMedCrossRefGoogle Scholar
  27. Wang, J.W., Wang, L.J., Mao, Y.B., et al., Control of Root Cap Formation by MicroRNA-Targeted Auxin Response Factors in Arabidopsis, Plant Cell, 2005, vol. 17, no. 8, pp. 2204–2216.PubMedCrossRefGoogle Scholar
  28. Woodward, A.W. and Bartel, B., Auxin: Regulation, Action, and Interaction, Ann. Bot., 2005, vol. 95, no. 5, pp. 707–735.PubMedCrossRefGoogle Scholar
  29. Xu, J., Hofhuis, H., Heidstra, R., et al., A Molecular Framework for Plant Regeneration, Science, 2006, vol. 311, no. 5759, pp. 385–388.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2007

Authors and Affiliations

  • V. A. Likhoshvai
    • 1
    • 2
  • N. A. Omel’yanchuk
    • 1
  • V. V. Mironova
    • 1
  • S. I. Fadeev
    • 2
    • 3
  • E. D. Mjolsness
    • 4
  • N. A. Kolchanov
    • 1
    • 2
  1. 1.Institute of Cytology and GeneticsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Institute of MathematicsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  4. 4.Institute of Genomics and BioinformaticsUniversity of CaliforniaIrvineUSA

Personalised recommendations