Russian Journal of Developmental Biology

, Volume 37, Issue 3, pp 146–162 | Cite as

Development and lessons of evolutionism

  • M. A. Shishkin


The present crisis of evolutionism was predictable from the very beginning, since the preformationist model of development underlying the idea of discrete heredity contradicts the systemic properties of ontogenesis. Accordingly, the principle of selection of heredity factors cannot explain evolution. The synthetic theory based on this principle contains insoluble contradictions in its key notions. According to the alternative epigenetic theory based on the integrity of living organization, heredity is a product of selection and expresses teleonomic directiveness of development toward a stable final state. Unification of the genetic concept of evolution with recognition of the integrity of development is principally impossible. The cause of dominance of genetic views on evolution lies in their correspondence to the mechanistic tradition of the 18–19th centuries, rather than in their logical substantiation. For the same reason, the evolutionary biology as a whole tends to equate particular linear dependences with the laws of evolution. Following this path in search for “new evolutionary synthesis” invites a priori its failure. Evolutionary interpretation of genetic generalizations is only possible on the basis of their description in terms of development.

Key words

developmental system heredity evolution stability regulation reductionism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberch, P., Developmental Constraints in Evolutionary Processes, Evolution and Development, Bonner, J.T., Ed., Berlin: Springer, 1982, pp. 313–332.Google Scholar
  2. Baer, K., Über Entwicklungsgeschichte der Thiere, Konigsberg: Kupfertaf., 1828, vol. 1.Google Scholar
  3. Balfour, F.M, Address to the Department of Anatomy and Physiology of the British Association for the Advancement of Science, The works of F.M. Balfour, Foster, M. and Sedgwick, A.L., Eds., London: Macmillan, 1995, vol. 1, pp. 698–713.Google Scholar
  4. Balkashina, E.I. and Romashov, D.D., Genetic Structure of Drosophila Population, Biol. Zh., 1935, vol. 4, no. 1, pp. 81–106.Google Scholar
  5. Baur, E., Einführung in die experimentelle Vererbungslehre, Berlin: Borntraeger, 1919.Google Scholar
  6. Beer, G., de, Embryology and Evolution, Oxford: Clarendon Press, 1930.Google Scholar
  7. Beloussov, L.V., Integral and Structural-Dynamic Approaches to Ontogenesis, Zh. Obshch. Biol., 1979, vol. 40, no. 4, pp. 514–529.Google Scholar
  8. Bertalanffy, L., General System Theory, New York: Braziller, 1969.Google Scholar
  9. Chetverikov, S.S., On Some Moments of Evolutionary Process from the Viewpoint of Modern Genetics, Zh. Eksperim. Biologii, Ser. A., 1926, vol. 2, no. 1, pp. 3–54.Google Scholar
  10. Conklin, E.C., The Organization of Cell-Lineage of the Ascidian Egg, J. Acad. Nat. Sci., 1905, vol. 13, pp. 1–119.Google Scholar
  11. Cope, E.D., The Origin of the Fittest, New York: Macmillan, 1887.Google Scholar
  12. Dobzhansky, Th., Genetics and the Origin of Species, New York: Columbia Univ., 1951.Google Scholar
  13. Dondua, A.K., Reprogramming of Control over Development in Early Ontogenesis of Metazoa, Zh. Obshch. Biol., 1979, vol. 40, no. 4, pp. 530–543.Google Scholar
  14. Driesch, H., The Science and Philosophy of the Organism, London: Black, 1908, vol. 1.Google Scholar
  15. Dubinin, N.P., Evolyutsiya populyatsii i radiatsiya (Evolution of Populations and Radiation), Moscow: Atomizdat, 1966a.Google Scholar
  16. Dubinin, N.P., Foundations of Population Genetics, Aktual’nye voprosy sovremennoi genetiki (Current Problems of Modern Genetics), Moscow: Mosk. Gos. Univ., 1966b, pp. 221–265.Google Scholar
  17. Dubinin, N.P., Romashov, D.D., Geptner, M.A., and Demidova, Z.A., Aberrant Polymorfism in Drosophila fasciata Meig. (syn.—melanogaster Meig.), Biol. Zh., 1937, vol. 6, no. 2, pp. 311–354.Google Scholar
  18. Filipchenko, Yu.A., Nasledstvennost’ (Heredity), Moscow: Gosizdat, 1924.Google Scholar
  19. Fisher, R., Genetical Theory of Natural Selection, Oxford: Clarendon, 1930.Google Scholar
  20. Gaisinovich, A.E., Zarozhdenie genetiki (Origin of Genetics), Moscow: Nauka, 1967.Google Scholar
  21. Gurdon, J., Regulyatsiya funktsii genov v razvitii zhivotnykh (Regulation of Gene Function in Animal Development), Moscow: Mir, 1977.Google Scholar
  22. Hertwig, O., Sovremennye spornye voprosy biologii. Vyp. 1. Evolyutsiya ili epigenez (Current Controversial Problems of Biology. Issue 1. Evolution or Epigenesis), Moscow, 1895.Google Scholar
  23. Gilbert, S.F., Opits, D.M., and Raff, R.A., New Synthesis of Evolutionary and Developmental Biology, Ontogenez, 1997, vol. 28, no. 5, pp. 325–343.Google Scholar
  24. Goldshmidt, R., Genetics and Developmental Physiology, Priroda, 1933, nos. 5–6, pp. 124–133.Google Scholar
  25. Goldschmidt, R., Physiological Genetics, New York: McGraw Hill, 1938.Google Scholar
  26. Goldschmidt, R., The Material Basis of Evolution, New Haven: Yale Univ., 1940.Google Scholar
  27. Goldschmidt, R., Theoretical Genetics, Berkeley: Univ. California, 1955.Google Scholar
  28. Golubovsky, M.D., Some Aspects of Interaction between Genetics and Evolutionary Theory, Metodologicheskie i filosofskie problemy biologii (Methodological and Philosophical Problems of Biology), Novosibirsk: Nauka, 1981, pp. 69–92.Google Scholar
  29. Golubovsky, M.D., Critical Studies in the Area of Genetics, Aleksandr Aleksandrovich Lyubishchev (Aleksandr A. Lyubishchev), Leningrad: Nauka, 1982, pp. 52–65.Google Scholar
  30. Golubovsky, M.D., Organization of Genotype and Form of Inherited Variability in Eukaryotes, Metodologischeskie problemy meditsiny i biologii (Methodological Problems of Medicine and Biology), Novosibirsk: Nauka, 1985, pp. 135–152.Google Scholar
  31. Golubovskii, M.D., Ivanov, Yu.P., Zakharov, I.K., and Berg, R.L., Studies of Synchronous and Parallel Changes of Gene Pools in Natural Populations of Fruit Flies Drosophila melanogaster, Genetika, 1974, vol. 10, no. 4, pp. 73–81.Google Scholar
  32. Goodwin, B.C., Development and Evolution, J. Theoret. Biol., 1982, vol. 97, pp. 43–55.CrossRefGoogle Scholar
  33. Gould, S.J., Change in Developmental Timing as a Mechanism of Macroevolution, Evolution and development, Bonner, J.T., Ed., Berlin: Springer, 1982a, pp. 337–346.Google Scholar
  34. Gould, S.J., The Meaning of Punctuated Equilibrium and Its Role in Validating a Huerarchical Approach to Macroevolution, Perspectives in Evolution, Milkman, R., Ed., Sunderland: Sinauer, 1982b, pp. 83–104.Google Scholar
  35. Grant, V., Evolyutsiya organizmov (Evolution of Organisms), Moscow: Mir, 1980.Google Scholar
  36. Gurwitsch, A.G., Lektsii po obshchei gistologii (Lectures on General Histology), Moscow.Google Scholar
  37. Gurwitsch, A.G., Teoriya biologicheskogo polya (Theory of Biological Field), Moscow: Sov. nauka, 1944.Google Scholar
  38. Haeckel, E., Generelle Morphologie der Organismen, Berlin: Georg Reimer, 1866, vols. 1 and 2.Google Scholar
  39. Inge-Vechtomov, S.G., System of Genotype Fiziologicheskaya genetika (Physiological Genetics), Leningrad: Meditsina, 1976, pp. 57–113.Google Scholar
  40. Jägersten, G., Evolution of the Metazoan Life Cycle, London: Academic, 1972.Google Scholar
  41. Johannsen, W., Elemente der exakten Erblichkeitslehre, Jena: Fischer, 1926.Google Scholar
  42. Johannsen, V., Elementy tochnogo izucheniya nasledstvennosti i izmenchivosti (Elements of Accurate Studies of Heredity and Variability), Moscow: Sel’khozgiz, 1933.Google Scholar
  43. Kamshilov, M.M., Is Pleiotropy a Property of the Gene?, Biol. Zh., 1935, vol. 4, no. 1, pp. 113–144.Google Scholar
  44. Kamshilov, M.M., Role of Phenotype in Evolution, Genetika, 1967, no. 12, pp. 108–116.Google Scholar
  45. Kauffman, S.A., The Origin of Order: Self-Organization in Evolution, New York: Oxford Univ., 1993.Google Scholar
  46. Kauffman, S.A., At Home in the Universe. The Search for Laws of Self-Organization and Complexity, New York: Oxford Univ. Press, 1995.Google Scholar
  47. Kimura, M., The Neutral Theory of Molecular Evolution, Cambridge: Cambridge Univ., 1983.Google Scholar
  48. King, M.-C. and Wilson, A.C., Evolution at Two Levels in Humans and Chimpanzees, Science, 1975, vol. 188, pp. 107–116.PubMedGoogle Scholar
  49. Korochkin, L.I., Biologiya individual’nogo razvitiya (Biology of Development), Moscow: Mosk. Gos. Univ., 2002a.Google Scholar
  50. Korochkin, L.I., Ontogenesis, Evolution, and Genes, Priroda, 2002b, no. 7, pp. 10–19.Google Scholar
  51. Kryzhanovskii, S.G., Principle of Recapitulation and Conditions of Historical Understanding of Development, Pamyati akad. A.N. Severtsova (To the Memory of Academician A.N. Severtsov), Leningrad: Akad. Nauk SSSR, 1939, pp. 281–366.Google Scholar
  52. Kun, T., Struktura nauchnykh revolyutsii (Structure of Scientific Revolutions), Moscow: Progress, 1975.Google Scholar
  53. Lankester, E.R., Notes on the Embryology and Classification of the Animal Kingdom: Comprising a Revision of Speculations Relative to the Origin and Significance of Germ-Layers, Quart. J. Microsc. Sci., 1877, vol. 17, pp. 399–454.Google Scholar
  54. Lewis, E.B., Genes and Developmental Pathways, Am. Zool., 1963, vol. 3, pp. 33–56.Google Scholar
  55. Lewis, E.B., Regulation of the Genes of the Bithorax Complex in Drosophila, Cold Spring Harbor Symp. Quant. Biol., 1985, vol. 50, pp. 155–164.PubMedGoogle Scholar
  56. Lyubishchev, A.A., On the Nature of Inherited Factors, Izv. Biol. NII Permsk. Un-ta, 1925, vol. 4, append. 1, pp. 1–142.Google Scholar
  57. Maderson, P.F.A., Alberch, P., Goodwin, B.C., et al., The Role of Development in Macroevolutionary Change, Evolution and Development, Bonner, J.T., Ed., Berlin: Springer, 1982, pp. 279–312.Google Scholar
  58. Mayr, E., Animal Species and Evolution, Cambridge: Harvard Univ., 1963.Google Scholar
  59. Mayr, E., Populations, Species, and Evolution, Cambridge (Mass.): Harvard Univ., 1970.Google Scholar
  60. Mayr, E., Evolution, Evolyutsiya (Evolution), Moscow: Mir, 1981, pp. 11–32.Google Scholar
  61. McGinnis, W. and Krumlauf, R., Homeobox Genes and Axial Patterning, Cell, 1992, vol. 68, pp. 283–302.PubMedCrossRefGoogle Scholar
  62. Mikhailova, N.N., Simarov, B.V., Tikhomirova, V.L., and Inge-Vechtomov, S.G., Effects of Elevated Concentrations of Magnesium and Sodium Ions at the Translational and Post-translational Levels in Yeast Saccharomyces cerevisiae, Issledovaniya po genetike (Studies in Genetics), Leningrad: Leningr. Gos. Univ., 1981, pp. 5–76.Google Scholar
  63. Mitrofanov, V.G., Physiological Foundations and Evolution of Dominance, Problemy eksperimental’noi biologii (Problems of Experimental Biology), Belyaev, D.K., Ed., Moscow: Nauka, 1977, pp. 21–31.Google Scholar
  64. Morgan, T., Strukturnye osnovy nasledstvennosti (Structural Foundations of Heredity), Moscow: Gosizdat, 1924.Google Scholar
  65. Morgan, T., Gene Stability, Izbrannye raboty po genetike (Selected Works on Genetics), Leningrad: Sel’khozgiz, 1937, pp. 243–255.Google Scholar
  66. Morgan, T., Eksperimental’nye osnovy evolyutsii (Experimental Foundations of Evolution), Moscow: Biomedgiz, 1938.Google Scholar
  67. Müller, F., For Darwin, Müller, F., and Haeckel,E., Osnovnoi biogeneticheskii zakon (Main Biogenetic Law), Schmalhausen, I.I., Ed., Moscow: Akad. Nauk SSSR, 1940, pp. 61–166.Google Scholar
  68. Olenov, Yu.M., Kletochnaya nasledstvennost’, differentsiatsiya kletok i kantserogenez (Cell Heredity, Differentiation, and Carcinogenesis), Leningrad: Nauka, 1967.Google Scholar
  69. Olenov, Yu.M., Molecular Biology and Theory of Natural Selection, Zh. Obsh. Biologii, 1976, vol. 37, no. 1, pp. 7–17.Google Scholar
  70. Olenov, Yu.M., Problemy molekulyarnoi genetiki (Problems of Molecular Genetics), Leningrad: Nauka, 1977.Google Scholar
  71. Quiring, R., Walldorf, U., Kloter, U., and Gehring, W.J., Homology of the eyeless Gene of Drosophila to the Small eye Gene in Mice and Aniridia in Humans, Science, 1994, vol. 265, pp. 785–789.PubMedGoogle Scholar
  72. Ruse, M., Filosofiya biologii (Philosophy of Biology), Moscow: Progress, 1977.Google Scholar
  73. Raff, R. and Kauffman, T., Embriony, geny i evolyutsiya (Embryos, Genes, and Evolution), Moscow: Mir, 1986.Google Scholar
  74. Rogal’, I.G., Concept of Evolution of Macromolecules as a Basis of Evolution of Living Organisms, Istoriko-biologicheskie issledovaniya (Historical-Biological Studies), Moscow: Nauka, 1997, no. 11, pp. 67–84.Google Scholar
  75. Roux, W., Gesammelte Abhandlungen Über Entwicklungsmechanik der Organismen, Leipzig: Engelmann, 1896, vol. 1.Google Scholar
  76. Salthe, S.N., Development and Evolution, Cambridge (Mass.); MIT, 1993.Google Scholar
  77. Schmalhausen, I.I., Puti i zakonomernosti evolyutsionnogo protsessa (Patways and Laws of Evolutionary Process), Moscow: Akad. Nauk SSSR, 1940.Google Scholar
  78. Schmalhausen, I.I., Stabilizing Selection and Its Place among the Factors of Evolution, Zh. Obshch. Biol., 1941, vol. 2, no. 3, pp. 307–354.Google Scholar
  79. Schmalhausen, I.I., Faktory evolyutsii (Factors of Evolution), Moscow: Nauka, 1968.Google Scholar
  80. Schmalhausen, I.I., Organizm kak tseloe v individual’nom i istoricheskom razvitii (Organism as a Whole in Individual and Historical Development), Moscow: Nauka, 1982.Google Scholar
  81. Shishkin, M.A., Development and Natural Selection, Ontogenez, 1984, vol. 15, no. 2, pp. 115–136.Google Scholar
  82. Shishkin, M.A., Ontogenesis and Evolutionary Theory, Evolyutsiya i biotsenoticheskie krizisy (Evolution and Biocoenotic Crises), Tatarinov, L.P. and Rasnitsyn, A.P., Eds., Moscow: Nauka, 1987, pp. 76–123.Google Scholar
  83. Shishkin, M.A., Evolution as Epigenetic Process, Sovremennaya paleontologiya (Modern Paleontology), Menner, V.V. and Makridin, V.P., Eds., Moscow: Nedra, 1988, pp. 142–169.Google Scholar
  84. Shishkin, M.A., The Development of the Evolutionary Theory. Some Lessons, Rivista di Biologia, 1989, vol. 82, pp. 323–325.Google Scholar
  85. Shishkin, M.A., Evolution As a Maintenance of Ontogenetic Stability, Acta Zool. Fennica, 1992, vol. 191, pp. 37–42.Google Scholar
  86. Shishkin, M.A., Two Alternative Approaches to Understanding of Evolutionary Process, Tez. Dokl. XI Mezhdunar. soveshchaniya po filogenii rastenii (Abstracts of Papers at the XI International Workshop on Plant Phylogeny), Moscow: Izd-vo Tsentra okhrany dikoi prirody, 2003, pp. 112–114.Google Scholar
  87. Soidla, T.R., Specific Features of Eukaryotic Genes, Inge-Vechtomov, S.G., Vvedenie v molekulyarnuyu genetiku (Introduction to Molecular Genetics), Moscow: Vysshaya Shkola, 1983, pp. 328–335.Google Scholar
  88. Spencer, G., Osnovaniya biologii (Foundations of Biology), St. Petersburg: Izd-e. Iogansona, 1899.Google Scholar
  89. Svetlov, P.G., Fiziologiya (mekhanika) razvitiya (Physiology (Mechanics) of Development), Leningrad: Nauka, 1978.Google Scholar
  90. Svetlov, P.G., On Integral and Elemental Methods in Embryology, Arkh. Anat. Gistol. Embriol., 1964, vol. 46, no. 4, pp. 3–26.PubMedGoogle Scholar
  91. Svetlov, P.G., Ontogenesis as a Goal-Directed (Teleonomic) Process, Arkh. Anat. Gistol. Embriol., 1972, vol. 63, no. 8, pp. 5–16.PubMedGoogle Scholar
  92. Thomson, K.S., Morphogenesis and Evolution, New York: Oxford Univ., 1988.Google Scholar
  93. Timofeev-Ressovsky, N.V. and Ivanov, V.I., Some Problems of Phenogenetics, Aktual’nye voprosy sovremennoi genetiki (Current Problems of Modern Genetics), Moscow: Mosk. Gos. Univ., 1966, pp. 114–130.Google Scholar
  94. Tokin, B.P., Obshchaya embriologiya (General Embryology), Moscow: Vysshaya Shkola, 1977.Google Scholar
  95. Vogt, W., Entwicklungsmechanik und Gewebezuchtung, Arch. Exp. Zellforsch., 1934, vol. 15, nos. 2–4, pp. 269–280.Google Scholar
  96. Volkenshtein, M.V., Essence of Biological Evolution, Usp. Fiz. Nauk, 1984, vol. 143, no. 3, pp. 429–466.Google Scholar
  97. Vorontsov, N.N., Razvitie evolyutsionnykh idei v biologii (Development of Evolutionary Ideas in Biology), Moscow: KMK, 2004.Google Scholar
  98. Vrba, E.S. and Eldredge, N., Individuals, Hierarchies and Processes: Towards a More Complete Evolutionary Theory, Paleobiology, 1984, vol. 10, pp. 146–171.Google Scholar
  99. Waddington, C.H., The Strategy of the Genes: A Discussion on Some Aspects of Theoretical Biology, London: Allen and Unwin, 1957.Google Scholar
  100. Waddington, C.H., Principles of Development and Differentiation, New York: Macmillan, 1966.Google Scholar
  101. Waddington, C.H., Main Biological Concepts, Na puti k teoreticheskoi biologii. Tom 1. Prolegomeny (Towards Theoretical Biology. Vol. 1. Prolegomena), Moscow: Mir, 1970.Google Scholar
  102. Wake, D.A., Roth, G., Wake, M.H., On the Problem of Stasis in Organismal Evolution, J. Theor. Biol., 1983, vol. 101, pp. 211–224.CrossRefGoogle Scholar
  103. Weismann, A., Das Keimplasma. Eine Theorie der Vererbung, Jena: G. Fischer, 1892.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • M. A. Shishkin
    • 1
  1. 1.Paleontological InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations