Advertisement

Russian Journal of Developmental Biology

, Volume 37, Issue 1, pp 27–36 | Cite as

Induction of androgenic cultures in Siberian larch

  • A. N. Ivanova
  • I. N. Trets’yakova
  • A. S. Vyazovetskova
Regeneration

Abstract

Male generative buds of the Siberian larch have no organic quiescence during the autumn-winter period and are capable of completing the development of male generative structures under favorable conditions. When microsporophylls of the Siberian larch were cultivated on medium MS with 0.2 mg/1 2.4-D, embryoids of two types were obtained: directly from the microspore body and via formation of organogenic callus. This means that in the Siberian larch, direct and indirect androgenesis in vitro is possible. The Siberian larch pollen was first germinated in vitro, which was enhanced by pretreatment with hydrogen peroxide.

Key words

conifers androgeresis in vitro Siberian larch 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abidovskaya, T.V., Morozova, V.V., and Shishlov, M.P., Production of Androgenic Dihaploids of the Russian turnip and field cabbage in a Culture of Anthers in vitro, Materials of the 8th International Conference “Biology of Plant Cell in vitro and Biotechnology”, Saratov, 2003, pp. 6–7.Google Scholar
  2. Anapiyaev, B.B., Influence of Genotype on Frequency of Regeneration in Culture of Triticum aestivum L. Microsopres, Genetika, 2000, vol. 36, no. 4, pp. 505–509.Google Scholar
  3. Batygina, T.B., Embryoidogeny Is a New Category of Ways of Reproduction of Flower Plants, Tr. Botan. In-ta, 1993, no. 8, pp. 15–25.Google Scholar
  4. Batygina, T.B., Genetic Heterogeneity of the Seed: Embryological Aspects, Fiziol. Rastenii, 1999, vol. 46, no. 3, pp. 438–454.Google Scholar
  5. Batygina, T.B., Kruglova, N.N., and Gorbunova, V.Yu., Kuls’tura izolirovannykh pyls’nikov zlakov s pozitsii eksperimentals’noi embriologii rastenii (metodologicheskie aspekty) (Culture of Isolated Anthers of Cereals from the Viewpoint of Experimental Plant Embryology: Methodological Aspects), Ufa: Biol. Nauchn. Tsentr Ural. Otdel. Ross. Akad. Nauk, 1992.Google Scholar
  6. Batygina, T.B., Kruglova, N.N., and Gorbunova, V.Yu., Androgenesis in vitro in Cereals Analysis from Embryological Viewpoint, Tsitologiya, 1994, vol. 36, no. 9–10, pp. 993–1005.Google Scholar
  7. Bonga, J.W. and Fowler, D.P., Growth and Differentiation in Gametophytes of Pinus resinosa Cultured in vitro, Can. J. Bot., 1970, vol. 48, no. 12, pp. 2205–2207.Google Scholar
  8. Bonga, J.W. and Molnnis, A.H., Stimulation of Callus Development from Immature Pollen of Pinus resinosa by Centrifugation, Plant Sci. Lett., 1975, vol. 4, no. 3, pp. 199–203.Google Scholar
  9. Butenko, R.G., Kuls’tura izolirovannykh tkanei i fiziologiya morfogeneza rastenii (Culture of Isolated Tissues and Physiology of Plant Morphogenesis), Moscow: Nauka, 1964.Google Scholar
  10. Butenko, R.G., Induction of Morphogenesis in Culture of Plant Tissues, Gormonals’naya regulyatsiya ontogeneza rastenii (Hormonal Regulation of Plant Ontogeny), Moscow: Nauka, 1984, pp. 42–54.Google Scholar
  11. Butenko, R.G., Cellular and Molecular Aspects of Plant Morphogenesis in vitro, I Chailakhyan. chtenie (1st Chailakhyan Lectures), Pushchino: Pushch. Nauchn. Tsentr, 1994, pp. 7–26.Google Scholar
  12. Chen, Ch.-Ch., Tsay, H.-Sh., and Huang, Ch.-R., Rice (Oryza sativa): A Factor Affecting Androgenesis in vitro, Biotechnology in Agriculture and Forestry, Berlin: Springer-Verlag, 1986, vol. 2, pp. 123–138.Google Scholar
  13. Clapham, D., in vitro Development of Callus from the Pollen of Lolium and Hordeum, Z. Pflanzenzücntg., 1971, vol. 65, no. 3, pp. 285–292.Google Scholar
  14. Davis, G.L., Apomixis and Abnormal Anther Development in Calotis lappulacea Benth., Aust. J. Bot., 1968, vol. 16, pp. 1–7.Google Scholar
  15. Dunwell, J.M., Mechanisms of Microspore Embryogenesis, Reproductive Biology and Plant Breeding, Berlin: Springer-Verlag, 1982, vol. 2, pp. 121–126.Google Scholar
  16. Dzhori, B.M. and Ambegaokar, K.B., Embryology: Yester-day and Today, Embriologiya rastenii: ispols’zovanie v genetike, selektsii, biotekhnologii (Plant Embryology: Use in Genetics, Selection, and Biotechnology), Ermakov, I.P., Ed., Moscow: Agropromizdat, 1990, pp. 9–65.Google Scholar
  17. Gorbunova, V.Yu. and Kruglova, N.N., Physiological Foundations of Androgenesis in vitro in Cereals, Tez. dokl. III s”ezda VOFR (Abstracts of Papers at the 3rd Congress of the National Society of Plant Physiology), St. Petersburg, 1993, part 1, p. 86.Google Scholar
  18. Gorbunova, V.Yu. and Kruglova, N.N., Influence of genetic Determination of the Level of Endogenous Phytohormones on Yield of Androgenetic de novo Formations in Wheat, Genetika, 1994, vol. 30, pp. 34–46.Google Scholar
  19. Gorbunova, V.Yu. and Kruglova, N.N., Induction of Androgenesis in vitro in Spring Soft Wheat. Optimal Phase of Microsporogenesis, Izv. Akad. Nauk, Ser. Biol., 1997, no. 6, pp. 668–676.Google Scholar
  20. Gorbunova, V.Yu., Kruglova, N.N., and Batygina, T.B., Androgenesis in Culture of Isolated Anthers: Cytoembryologycal Aspects, Usp. Sovrem. Biol., 1993, vol. 113, no. 1, pp. 19–35.Google Scholar
  21. Gresshoff, P.M. and Dou, C.H., Development and Differentiation of Haploid Lycopersicum esculentum (Tomato), Planta, 1972, vol. 107, no. 2, pp. 161–170.CrossRefGoogle Scholar
  22. Heslop-Harrison, J., Sex Expression in Flowering Plant Meristem and Differetiation, Neurospora, Brookhaven Symp. Biol., 1963, no. 16, pp. 109–125.Google Scholar
  23. Kameya, T. and Hinata, K., Induction of Haploid Plants from Pollen Grains of Brassica, Ikushugaku Zasshi, 1970, vol. 20, no. 2, pp. 82–87.Google Scholar
  24. Konar, R.N., A Haploid Tissue from Pollen of Ephedra foliata Boiss, Phytomorphology, 1963, vol. 13, no. 2, pp. 170–174.Google Scholar
  25. Kruglova, N.N., Morfogenez v kuls’ture pyls’nikov pshenitsy: Embriologicheskii podkhod (Morphogenesis in Culture of Wheat Anthers: Embryological Approach), Ufa: Gilem, 2001.Google Scholar
  26. Kruglova, N.N. and Gorbunova, V.Yu., Callusogenesis as a Way of Morphogenesis in Culture of Isolated Cereal Anthers, Usp. Sovrem. Biol., 1997, vol. 117, no. 1, pp. 83–94.Google Scholar
  27. Kruglova, N.N., Gorbunova, V.Yu., and Batygina, T.B., Embryoidogenesis as a Way of Morphogenesis in Culture of Isolated Cereal Anthers, Usp. Sovrem. Biol., 1995, vol. 115, no. 6, pp. 692–705.Google Scholar
  28. Minina, E.G., Smeshchenie pola u rastenii pod vozdeistviem faktorov vneshnei sredy (Sex Inversion in Plants under the Influence of Environmental Factors), Moscow: Akad. Nauk SSSR, 1952.Google Scholar
  29. Minina, E.G., Importance of Sex Inversion in Plants for Selection: Interrelations of Heterosis and Polyploidy with Sexualization, Zh. Obshch. Biol., 1965, vol. 26, no. 4, pp. 416–429.Google Scholar
  30. Minina, E.G. and Larionova, N.A., Morfogenez i proyavlenie pola u khvoinykh (Morphogenesis and Sex Expression in Conifers), Moscow: Nauka, 1979.Google Scholar
  31. Murashige, T. and Skoog, F., A Revised Medium for Rapid Growth and Bioassays with Tobacco Tissue Cultures, Physiol. Plant., 1962, vol. 15, no. 4, pp. 473–497.Google Scholar
  32. Naithani, S.P., Chromosome Studies in Hyacinthus orientalis L. 3. Reversal of Sexual State in the Anthers of H. orientalis var. Yellow Hammer, Ann. Bot., 1937, vol. 1, pp. 369–377.Google Scholar
  33. Prozina, M.N., Botanicheskaya mikrotekhnika (Botanical Microtechniques), Moscow: Vysshaya Shkola, 1960.Google Scholar
  34. Ram, M., Morphological and Embryological Studies in the Family Santalaceae. 1. Comandra umbellate (L.) Nutt., Phytomorphology, 1957, vol. 7, pp. 24–35.Google Scholar
  35. Rokitskii, P.F., Biologicheskaya statistika (Biological Statistics), Minsk: Nauka, 1973.Google Scholar
  36. Sabinin, D.A., Fiziologiya razvitiya rastenii (Physiology of Plant Development), Moscow: Akad. Nauk SSSR, 1963.Google Scholar
  37. Skripachenko, V.V., Growing in vitro of Germlings of Three Pine Species, Fiziol. Rastenii, 1982, vol. 29, no. 1, pp. 205–211.Google Scholar
  38. Stow, J., Experimental Studies on the Formation on the Embryo Sac-Like Giant Pollen Grain in the Anther of Hyacinthus orientalis, Cytologia, 1930, vol. 1, pp. 150–155.Google Scholar
  39. Stow, J., On the Female Tendencies of the Embryo Sac-Like Giant Pollen Grain of Hyacinthus orientalis, Cytologia, 1934, vol. 5, pp. 88–108.Google Scholar
  40. Sukhanov, V.M., Androcliny and Its Specific Features in Wheat, Cand. Sci. (Biol.) Dissertation, Saratov: Gos. Un-t, 1983.Google Scholar
  41. Tivari, Sh., Morphogenesis in Culture of Barley Anthers and Isolated Microspores, Cand. Sci. (Biol.) Dissertation, Moscow: Timiryazev Sels’skokhoz. Akad., 1989.Google Scholar
  42. Trets’yakova, I.N., Embriologiya khvoinykh: Fiziologicheskie aspekty (Embryology of Conifers: Physiological Aspects), Novosibirsk: Nauka, 1990.Google Scholar
  43. Trets’yakova, I.N., Ivanova, A.N., Noskova, N.E., and Novoselova, N.V., Specigfic Features of Development of Male Generative Buds of Larix sibirica Ledeb. and Their Capacity for Androgenesis in in vitro Culture, Mater. V s”ezda VOFR (Materials of the 5th Congress of Nationinal Soiety of Plant Physiology), Penza, 2003, pp. 528–529.Google Scholar
  44. Tukeeva, M.I., Matveeva, N.P., and Ermakov, I.P., Respiration of Microspores during Induction of Anther Embryogenesis in Tobacco, Fiziol. Rastenii, 1994, vol. 41, no. 6, pp. 821–825.Google Scholar
  45. Tulecke, W., A Tissue Derived from the Pollen of Gingko biloba L., Science, 1953, vol. 117, pp. 599–600.PubMedGoogle Scholar
  46. Zou, J.-T., Zhan, X.-Y., Wu, H.-M., et al., Characterization of a Rice Pollen Specific Gene Snd and Its Expression, Am. J. Bot., 1994, vol. 81, no. 5, pp. 552–561.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • A. N. Ivanova
    • 1
  • I. N. Trets’yakova
    • 1
  • A. S. Vyazovetskova
    • 1
  1. 1.Sukachev Institute of ForestrySiberian Branch of the Russian Academy of SciencesKrasnoyarskRussia

Personalised recommendations