Advertisement

Genetic Variations in Nrf2-Keap1 Complex: A Step towards Understanding Cancer Resistance in Blind Mole Rats Cytotypes

  • 25 Accesses

Abstract—The Nrf2-Keap1 regulation system plays a crucial role in cytoprotection against electrophilic/oxidative stress. Previous studies have identified missense mutations in Nrf2/Keap1 complex which abolish its activity. The amino acid corresponding to codon 212 in Keapl’s IVR domain is conserved as tyrosine (Y) among different mammalian species whereas only Nannospalax and two other species carry a cysteine (C) residue at this position. These species include Sperm whale and European hedgehog that live in hypoxic environment. In this study, we examined genetic variations in Nrf2-Keap1 complex, which was reported to be important in cancer pathogenesis in previous studies, in cancer resistant blind mole rat species with varying chromosome numbers (2n: 46–60) that we collected from different regions in Turkey. This study was the first to provide information on genetic variants in Nrf2/Keap1 complex of blind mole rats living in Turkey.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    Avivi, A., Resnick, M.B., Nevo, E., Joel, A., and Levy, A.P., Adaptive hypoxic tolerance in the subterranean mole rat Spalax ehrenbergi: the role of vascular endothelial growth factor, FEBS Lett., 1999, vol. 452, pp. 133–140.

  2. 2

    Avivi, A., Gerlach, F., Joel, A., Reuss, S., Burmester, T., Nevo, E., and Hankeln, T., Neuroglobin, cytoglobin, and myoglobin contribute to hypoxia adaptation of the subterranean mole rat Spalax,Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 14, pp. 21570–21575.

  3. 3

    Best, S.A. and Sutherland, K.D., “Keaping” a lid on lung cancer: the Keap1-Nrf2 pathway, Cell Cycle, 2018, vol. 17, pp. 1696–1707.

  4. 4

    Chatterjee, P., Yadav, M., Chauhan, N., Huang, Y., and Luo, Y., Cancer cell metabolism featuring Nrf2, Curr. Drug Discov. Technol., 2018, vol. 10.

  5. 5

    Chu, X.Y., Li, Z.J., Zheng, Z.W., Tao, Y.L., Zou, F.X., and Yang, X.F., KEAP1/NRF2 signaling pathway mutations in cervical cancer, Eur. Rev. Med. Pharmacol. Sci., 2018, vol. 22, pp. 4458–4466.

  6. 6

    Dinkova-Kostova, A.T., Holtzclaw, W.D., Cole, R.N., Itoh, K., Wakabayashi, N., Katoh, Y., Yamamoto, M., and Talalay, P., Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants, Proc. Natl. Acad. Sci. U. S. A., 2002, vol. 3, pp. 11908–11913.

  7. 7

    Ellis, M., Stern, O., and Ashur-Fabian, O., The double benefit of Spalax p53: surviving underground hypoxia while defying lung cancer cells in vitro via autophagy and caspase-dependent cell death, Oncotarget, 2016, vol. 27, pp. 63242–63251.

  8. 8

    Fang, X., Nevo, E., Han, L., Levanon, E.Y., Zhao, J., Avivi, A., Larkin, D., Jiang, X., Feranchuk, S., Zhu, Y., Fishman, A., Feng, Y., Sher, N., Xiong, Z., Hankeln, T., Huang, Z., Gorbunova, V., Zhang, L., Zhao, W., Wildman, D.E., Xiong, Y., Gudkov, A., Zheng, Q., Rechavi, G., Liu, S., Bazak, L., Chen, J., Knisbacher, B.A., Lu, Y., Shams, I., Gajda, K., Farré, M., Kim, J., Lewin, H.A., Ma, J., Band, M., Bicker, A., Kranz, A., Mattheus, T., Schmidt, H., Seluanov, A., Azpurua, J., Mcgowen, M.R., Ben-Jacob, E., Li, K., Peng, S., Zhu, X., Liao, X., Li, S., Krogh, A., Zhou, X., Brodsky, L., and Wang, J., Genome-wide adaptive complexes to underground stresses in blind mole rats Spalax,Nat Commun., 2014, vol. 3, p. 3966.

  9. 9

    Hayes, J.D., Mcmahon, M., Chowdhry, S., and Dinkova-Kostova, A.T., Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway, Antioxid. Redox Signal., 2010, vol. 1, pp. 1713–1748.

  10. 10

    Ichimura, Y. and Komatsu, M., Activation of p62/SQSTM1-Keap1-nuclear factor erythroid 2-related factor 2 pathway in cancer, Front. Oncol., 2018, vol. 7, p. 210.

  11. 11

    Ivanitskaya, E., Sozen, M., Rashkovetsky, L., Matur, F., and Nevo, E., Discrimination of 2n = 60 Spalax leucodon cytotypes (Spalacidae, Rodentia) in Turkey by means of classical and molecular cytogenetic techniques, Cytogenet. Genome Res., 2008, vol. 122, pp. 139–149.

  12. 12

    Kankiliç, T., Colak, E., and Kankiliç, T., Macroanatomical and karyological features of two blind mole rat subspecies (Rodentia: Spalacidae) from Turkey, Anat. Histol. Embryol., 2009, vol. 38, pp. 145–153.

  13. 13

    Kansanen, E., Kivelä, A.M., and Levonen, A.L., Regulation of Nrf2-dependent gene expression by 15-deoxy-Delta12, 14-prostaglandin J2, Free Radic. Biol. Med., 2009, vol. 47, pp. 1310–1317.

  14. 14

    Kansanen, E., Kuosmanen, S.M., Leinonen, H., and Levonen, A.L., The Keap1-Nrf2 pathway: mechanisms of activation and dysregulation in cancer, Redox Biol., 2013, vol. 18, pp. 45–49.

  15. 15

    Kaspar, J.W., Niture, S.K., and Jaiswal, A.K., Nrf2:INrf2 (Keap1) signaling in oxidative stress, Free Radic. Biol. Med., 2009, vol. 1, pp. 1304–1309.

  16. 16

    Krajka-Kuźniak, V., Paluszczak, J., and Baer-Dubowska, W., The Nrf2-ARE signaling pathway: an update on its regulation and possible role in cancer prevention and treatment, Pharmacol. Rep., 2017, vol. 69, pp. 393–402.

  17. 17

    Lagunas-Rangel, Fa, Cancer-free aging: Insights from Spalax ehrenbergi superspecies, Ageing Res. Rev., 2018, vol. 15, pp. 18–23.

  18. 18

    Lewis, K.N., Wason, E., Edrey, Y.H., Nevo, E., and Buffenstein, R., Regulation of Nrf2 signaling and longevity in naturally long-lived rodents, Proc. Natl. Acad. Sci. U. S. A., 2015, vol. 24, pp. 13722–137277.

  19. 19

    Li, C., Cheng, L., Wu, H., He, P., Zhang, Y., Yang, Y., Chen, J., and Chen, M., Activation of the KEAP1-NRF2-ARE signaling pathway reduces oxidative stress in Hep2 cells, Mol. Med. Rep., 2018, vol. 18, pp. 2541–2550.

  20. 20

    Loignon, M., Miao, W., Hu, L., Bier, A., Bismar, T.A., Scrivens, P.J., Mann, K., Basik, M., Bouchard, A., Fiset, P.O., Batist, Z., and Batist, G., Cul3 overexpression depletes Nrf2 in breast cancer and is associated with sensitivity to carcinogens, to oxidative stress and to chemotherapy, Mol. Cancer Ther., 2009, vol. 8, pp. 2432–2440.

  21. 21

    Malik, A., Korol, A., Weber, M., Hankeln, T., Avivi, A., and Band, M., Transcriptome analysis of the Spalax hypoxia survival response includes suppression of apoptosis and tight control of angiogenesis, BMC Genomics, 2012, vol. 13, p. 615.

  22. 22

    Manov, I., Hirsh, M., Iancu, T.C., Malik, A., Sotnichenko, N., Band, M., Avivi, A., and Shams, I., Pronounced cancer resistance in a subterranean rodent, the blind mole-rat, Spalax: in vivo and in vitro evidence, BMC Biol., 2013, vol. 9, p. 91.

  23. 23

    Nevo, E., Evolution of genome-phenome diversity under environmental stress, Proc. Natl. Acad. Sci. U. S. A., 2001, vol. 98, pp. 6233–6240.

  24. 24

    Nevo, E., Stress, adaptation, and speciation in the evolution of the blind mole rat, Spalax, in Israel, Mol. Phylogenet. Evol., 2013, vol. 66, pp. 515–525.

  25. 25

    Nevo, E., Filippucci, M.G., and Beiles, A., Genetic polymorphisms in subterranean mammals (Spalax ehrenbergi superspecies) in the near east revisited: patterns and theory, Heredity (Edinb.), 1994, vol. 72, pp. 465–487.

  26. 26

    Nevo, E., Beiles, A., and Spradling, T., Molecular evolution of cytochrome b of subterranean mole rats Spalax ehrenbergi superspecies in Israel, J. Mol. Evol., 1999, vol. 49, pp. 215–226.

  27. 27

    Qian, Z., Zhou, T., Gurguis, C.I., Xu, X., Wen, Q., L.V J., Fang, F., Hecker, L., Cress, A.E., Natarajan, V., Jacobson, J.R., Zhang, D.D., Garcia, J.G., and Wang, T., Nuclear factor, erythroid 2-like 2-associated molecular signature predicts lung cancer survival, Sci. Rep., 2015, vol. 24, p. 16889.

  28. 28

    Ravid, O., Shams, I., Ben-Califa, N., Nevo, E., Avivi, A., and Neumann, D., An extracellular region of the erythropoietin receptor of the subterranean blind mole rat Spalax enhances receptor maturation, Proc. Natl. Acad. Sci. U. S. A., 2007, vol. 4, pp. 14360–14365.

  29. 29

    Saito, R., Suzuki, T., Hiramoto, K., Asami, S., Naganuma, E., Suda, H., Iso, T., Yamamoto, H., Morita, M., Baird, L., Furusawa, Y., Negishi, T., Ichinose, M., and Yamamoto, M., Characterizations of three major cysteine sensors of Keap1 in stress response, Mol. Cell Biol., 2015, vol. 2, pp. 271–284.

  30. 30

    Salah-Hussiesy, S., Mamchur, A., Odeh, A., Domankevich, V., and Shams, I., Reduced calcium influx in the hypoxia-tolerant Spalax: the role of the erythropoietin receptor, Cell Calcium, 2018, vol. 74, pp. 123–130.

  31. 31

    Schmidt, H., Hangmann, J., Shams, I., Avivi, A., and Hankeln, T., Molecular evolution of antioxidant and hypoxia response in long-lived, cancer-resistant blind mole rats: the Nrf2-Keap1 pathway, Gene, 2016, vol. 15, pp. 293–298.

  32. 32

    Schulke, S., Dreidax, D., Malik, A., Burmester, T., Nevo, E., Band, M., and Avivi, A.T., Living with stress: regulation of antioxidant defense genes in the subterranean, hypoxia-tolerant mole rat, Spalax,Gene, 2012, vol. 1, pp. 199–206.

  33. 33

    Sporn, M.B. and Liby, K.T., NRF2 and cancer: the good, the bad and the importance of context, Nat. Rev. Cancer, 2012, vol. 19, pp. 564–571.

  34. 34

    Taguchi, K. and Yamamoto, M., The Keap1-Nrf2 system in cancer, Front. Oncol., 2017, vol. 4, p. 85.

  35. 35

    Taguchi, K., Motohashi, H., and Yamamoto, M., Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution, Genes Cells, 2011, vol. 16, pp. 123–140.

  36. 36

    Widmer, H.R., Hoppeler, H., Nevo, E., Taylor, C.R., and Weibel, E.R., Working underground: respiratory adaptations in the blind mole rat, Proc. Natl. Acad. Sci. U. S. A., 1997, vol. 4, pp. 2062–2067.

  37. 37

    Wise, J.P.-S.R., Payne, R., Wise, S.S., Lacerte, C., Wise, J., Gianios, J.R., Thompson, W.D., Perkins, C., Zheng, T., Zhu, C., Benedict, L., and Kerr, I., A global assessment of chromium pollution using sperm whales (Physeter macrocephalus) as an indicator species, Chemosphere, 2009, vol. 75, pp. 1461–1467.

  38. 38

    Yamawaki, K., Kanda, H., and Shimazaki, R., Nrf2 activator for the treatment of kidney diseases, Toxicol. Appl. Pharmacol., 2018, vol. 21.

  39. 39

    Yanaka, A., Role of NRF2 in protection of the gastrointestinal tract against oxidative stress, J. Clin. Biochem. Nutr., 2018, vol. 63, pp. 18–25.

  40. 40

    Yoo, N.J., Kim, H.R., Kim, Y.R., An, C.H., and Lee, S.H., Somatic mutations of the KEAP1 gene in common solid cancers, Histopathology, 2012, vol. 60, pp. 943–952.

  41. 41

    Zhang, D.D., Lo, S.C., Cross, J.V., Templeton, D.J., and Hannink, M., Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex, Mol. Cell Biol., 2004, vol. 24, pp. 10941–10953.

Download references

Author information

Correspondence to Dilara Fatma Akın-Balı.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dilara Fatma Akın-Balı, Teoman Kankılıç Genetic Variations in Nrf2-Keap1 Complex: A Step towards Understanding Cancer Resistance in Blind Mole Rats Cytotypes. Biol Bull Russ Acad Sci 46, 547–554 (2019). https://doi.org/10.1134/S1062359019060050

Download citation

  • Keywords: Nrf2, Keap1, genetic variations
  • cancer resistance
  • blind mole rat
  • Nannospalax