Biology Bulletin

, Volume 46, Issue 3, pp 277–283 | Cite as

EPR Spectrometric Estimation of the Distribution of Intravenously Injected Nanodiamonds in Mice

  • E. V. InzhevatkinEmail author
  • A. V. Baron
  • N. G. Maksimov
  • M. B. Volkova
  • A. P. Puzyr
  • V. S. Bondar


The distribution in mice of intravenously injected modified nanodiamonds (MNDs) obtained by detonation synthesis was studied using electron paramagnetic resonance (EPR) spectrometry. It has been shown that 2.5 h after MND injection into the tail vein of mice, the nanoparticles accumulate mainly in the lungs and liver of animals; much smaller amounts of nanoparticles were found in the kidneys and heart. The presence of MNDs in the samples of blood, spleen, brain, and thigh muscles of mice was not detected within the sensitivity of the method used.



  1. 1.
    Artiles, M., Rout, C.S., and Fisher, T.S., Graphene-based hybrid materials and devices for biosensing, Adv. Drug Deliv. Rev., 2011, vol. 63, pp. 1352–1360.CrossRefPubMedGoogle Scholar
  2. 2.
    Baron, A.V., Osipov, N.V., Olkhovskiy, I.A., Puzyr, A.P., and Bondar, V.S., Binding the immunoglobulins of human serum by nanodiamonds, Dokl. Biochem. Biophys., 2014, vol. 457, pp. 158–159.CrossRefPubMedGoogle Scholar
  3. 3.
    Baron, A.V., Osipov, N.V., Yashchenko, S.V., Kokotukha, Yu.A., Baron, I.I., Puzyr, A.P., Olkhovskiy, I.A., and Bondar, V.S., Adsorption of viral particles from the blood plasma of patients with viral hepatitis on nanodiamonds, Dokl. Biochem. Biophys., 2016, vol. 469, pp. 244–246.CrossRefPubMedGoogle Scholar
  4. 4.
    Bondar, V.S. and Puzyr, A.P., Nanodiamonds for biological investigations, Phys. Solid State, 2004, vol. 46, pp. 716–719.CrossRefGoogle Scholar
  5. 5.
    Bondar, V.S., Pozdnyakova, I.O., and Puzyr, A.P., Applications of nanodiamonds for separation and purification of proteins, Phys. Solid State, 2004, vol. 46, pp. 758–760.CrossRefGoogle Scholar
  6. 6.
    Carbon Nanomaterials for Biomedical Applications, Zhang, M., Naik, R.R., and Dai, L., Eds., New York: Springer, 2016.Google Scholar
  7. 7.
    Danilenko, V.V., On the history of the discovery of nanodiamond synthesis, Phys. Solid State, 2004, vol. 46, pp. 595–599.CrossRefGoogle Scholar
  8. 8.
    Ding, X., Liu, J., Li, J., Wang, F., Wang, Y., Song, S., and Zhang, H., Polydopamine coated manganese oxide nanoparticles with ultrahigh relaxivity as nanotheranostic agents for magnetic resonance imaging guided synergetic chemo-/photothermal therapy, Chem. Sci., 2016, vol. 7, pp. 6695–6700.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Fisher, P. and Fadley, C.S., Probing nanoscale behavior of magnetic materials with soft X-ray spectroscopy, Nanotech. Rev., 2012, vol. 1, pp. 5–15.Google Scholar
  10. 10.
    Gutwein, L.G. and Webster, T.J., Osteoblast and chondrocyte proliferation in the presence of aluminia and titania nanoparticles, J. Nanopart. Res., 2002, vol. 4, pp. 231–238.CrossRefGoogle Scholar
  11. 11.
    Ishchenko, L.A., Stolyar, S.V., Ladygina, V.P., Raikher, Yu.L., Balasoiu, M., Bayokov, O.A., Iskhakov, R.S., and Inzhevatkin, E.V., Magnetic properties and application of biomineral particles produced by bacterial culture, Phys. Procedia, 2010, vol. 9, pp. 279–282.CrossRefGoogle Scholar
  12. 12.
    Jin-Wook, Y., Nishit, D., and Samir, M., Adaptive micro and nanoparticles: temporal control over carrier properties of faciliate drug delivery, Adv. Drug Deliv. Rev., 2011, vol. 63, pp. 1247–1256.CrossRefGoogle Scholar
  13. 13.
    Kaur, P. and Badea, I., Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging, Int. J. Nanomed., 2013, vol. 8, pp. 203–220.CrossRefGoogle Scholar
  14. 14.
    Kharisov, B.I., Kharissova, O.V., and Chavez-Guerrero, L., Synthesis techniques, properties, and applications of nanodiamonds, Synth. React. Inorg., Metal-Org., Nano-Metal Chem., 2010, vol. 40, pp. 84–101.Google Scholar
  15. 15.
    Kozak, O., Sudolska, M., Pramanik, G., Cígler, P., Otyepka, M., and Zboȓil, R., Photoluminescent carbon nanostructures, Chem. Mater., 2016, vol. 28, pp. 4085–4128.CrossRefGoogle Scholar
  16. 16.
    Krueger, A., New carbon materials: biological applications of functionalized nanodiamond materials, Chem.-Eur. J., 2008, vol. 14, pp. 1382–1390.CrossRefPubMedGoogle Scholar
  17. 17.
    Kumar, A., Fullerenes for biomedical applications, J. Environ. Appl. Biores., 2015, vol. 3, pp. 175–191.Google Scholar
  18. 18.
    Lad, A. and Agrawal, Y.K., Nanodevices for monitoring toxicological behavior of therapeutic agent, Rev. Nanosci. Nanotech., 2012, vol. 1, pp. 217–227.CrossRefGoogle Scholar
  19. 19.
    Lamanna, G., Battigelli, A., Menard-Moyon, C., and Bianco, A., Multifunctionalized carbon nanotubes as advanced multimodal nanomaterials for biomedical applications, Nanotech. Rev., 2012, vol. 1, pp. 17–29.CrossRefGoogle Scholar
  20. 20.
    Lynch, I. and Dawson, K.A., Protein-nanoparticle interactions, Nano Today, 2008, vol. 3, pp. 40–47.CrossRefGoogle Scholar
  21. 21.
    Maas, M., Carbon nanomaterials as antibacterial colloids, Materials, 2016, vol. 9, pp. 617–636.CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Medvedeva, N.N., Zhukov, E.L., Inzhevatkin, E.V., and Bezzabotnov, V.E., Antitumor properties of modified detonation nanodiamonds and sorbed doxorubicin on the model of Ehrlich ascites carcinoma, Bull. Exp. Biol. Med., 2016, vol. 160, pp. 372–375.CrossRefPubMedGoogle Scholar
  23. 23.
    Mendes, R.G., Bachmatiuk, A., and Buchner, B., Carbon nanostructures as multi-functional drug delivery platforms, J. Mater. Chem. B, 2013, vol. 1, pp. 401–428.CrossRefGoogle Scholar
  24. 24.
    Mochalin, V.N., Shenderova, O., Ho, D., and Gogotsi, Y., The properties and applications of nanodiamonds, Nat. Nanotechnol., 2011, vol. 7, pp. 11–23.CrossRefPubMedGoogle Scholar
  25. 25.
    Mogilnaya, O.A. and Bondar, V.S., Antibacterial properties of lysozyme immobilized on nanodiamonds, Micro Nanosyst., 2012, vol. 4, pp. 41–47.CrossRefGoogle Scholar
  26. 26.
    Monaco, A.M. and Giugliano, M., Carbon-based smart nanomaterials in biomedicine and neuroengineering, Beilstein J. Nanotechnol., 2014, vol. 5, pp. 1849–1863.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Morachis, J.M., Mahmoud, E.A., and Almutairi, A., Physical and chemical strategies for therapeutic delivery by using polymeric nanoparticles, Pharmacol. Rev., 2012, vol. 64, pp. 505–519.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Nanotechnology in Biology and Medicine: Methods, Devices, and Applications, Vo-Dinh, T., Ed., New York: CRC Press, 2006.Google Scholar
  29. 29.
    Plank, C., Zelphati, O., and Mykhalik, O., Magnetically enhanced nucleic acid delivery, Adv. Drug Deliv. Rev., 2011, vol. 63, pp. 1300–1331.CrossRefPubMedGoogle Scholar
  30. 30.
    Prokhorenkov, V.I., Vasil’eva, E.Yu., Puzyr, A.P., and Bondar, V.S., Effects of nanodiamonds of explosive synthesis on the skin of experimental animals locally exposed to cobalt and chrome ions, Bull. Exp. Biol. Med., 2014, vol. 158, pp. 264–267.CrossRefPubMedGoogle Scholar
  31. 31.
    Purtov, K.V., Burakova, L.P., Puzyr, A.P., and Bondar, V.S., Interaction of linear and ring forms of DNA molecules with nanodiamonds synthesized by detonation, Nanotecnology, 2008, vol. 19, pp. 1–3.CrossRefGoogle Scholar
  32. 32.
    Purtov, K.V., Petunin, A.I., Burov, A.E., Puzyr, A.P., and Bondar, V.S., Nanodiamonds as carriers for address delivery of biologically active substances, Nanoscale Res. Lett., 2010, vol. 5, pp. 631–636.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Purtov, K., Petunin, A., Inzhevatkin, E., Burov, A., Ronzhin, N., Puzyr, A., and Bondar, V., Biodistribution of different sized nanodiamonds in mice, J. Nanosci. Nanotech., 2015, vol. 15, pp. 1070–1075.CrossRefGoogle Scholar
  34. 34.
    Puzyr, A.P. and Bondar, V.S., Method of production of nanodiamonds of explosive synthesis with an increased colloidal stability, RF Patent no. 2252192, Bull. no. 14, 2005.Google Scholar
  35. 35.
    Puzyr, A.P., Neshumayev, D.A., Tarskikh, S.V., Makarskaya, G.V., Dolmatov, V.Yu., and Bondar, V.S., Destruction of human blood cells in interaction with detonation nanodiamonds in experiments in vitro, Diam. Relat. Mater., 2004, vol. 13, pp. 2020–2023.CrossRefGoogle Scholar
  36. 36.
    Puzyr, A.P., Bondar, V.S., Bukayemsky, A.A., Selyutin, G.E., and Kargin, V.F., Physical and chemical properties of modified nanodiamonds, NATO Sci. Ser. II. Math. Phys. Chem., 2005, vol. 192, pp. 261–270.Google Scholar
  37. 37.
    Puzyr, A.P., Purtov, K.V., Shenderova, O.A., Luo, M., Brenner, D.W., and Bondar, V.S., The adsorption of aflatoxin b1 by detonation-synthesis nanodiamonds, Dokl. Biochem. Biophys., 2007a, vol. 417, pp. 299–301.CrossRefPubMedGoogle Scholar
  38. 38.
    Puzyr, A.P., Baron, A.V., Purtov, K.V., Bortnikov, E.V., Skobelev, N.N., Mogilnaya, O.A., and Bondar, V.S., Nanodiamonds with novel properties: a biological study, Diam. Relat. Mater., 2007b, vol. 16, pp. 2124–2128.CrossRefGoogle Scholar
  39. 39.
    Ronzhin, N.O., Baron, A.V., Mamaeva, E.S., Puzyr, A.P., and Bondar, V.S., Nanodiamond-based tests systems for biochemical determination of glucose and cholesterol, J. Biomater. Nanobiotech., 2013, vol. 4, pp. 242–246.CrossRefGoogle Scholar
  40. 40.
    Ronzhin, N.O., Puzyr, A.P., and Bondar, V.S., On the applicability of nanodiamonds produced by detonation synthesis for phenol testing in aqueous media, Dokl. Chem., 2017, vol. 475, no. 1, pp. 155–158.CrossRefGoogle Scholar
  41. 41.
    Say, J.M., van Vreden, C., Reilly, D.J., Brown, L.J., Rabeau, J.R., and King, N.J.C., Luminescent nanodiamonds for biomedical applications, Biophys. Rev., 2011, vol. 3, pp. 171–184.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Schrand, A.M., Hens, S.A.C., and Shenderova, O.A., Nanodiamond particles: properties and perspectives for bioapplications, Crit. Rev. Solid State Mater. Sci., 2009, vol. 34, pp. 18–74.CrossRefGoogle Scholar
  43. 43.
    Shugalei, I.V., Voznyakovskii, A.P., Garabadzhiu, A.V., Tselinskii, I.V., Sudarikov, A.M., and Ilyushin, M.A., Biological activity of detonation nanodiamond and prospects in its medical and biological applications, Russ. J. Gen. Chem., 2013, vol. 83, pp. 851–883.CrossRefGoogle Scholar
  44. 44.
    Slegerova, J., Rehor, I., Havlik, J., Raabova, H., Muchova, E., and Cigler, P., Nanodiamonds as intracellular probes for imaging in biology and medicine, in Fundamental Biomedical Technologies 7, Intracellular Delivery II, Prokop, A., Iwasaki, Y., and Harada, A., Eds., Dordrecht: Springer Science+Business Media, 2014, pp. 363–401.Google Scholar
  45. 45.
    Soltamova, A.A., Il’in, I.V., Shakhov, F.M., Kidalov, S.V., Vul’, A.Ya., Yavkin, B.V., Mamin, G.V., Orlinskii, S.B., and Baranov, P.G., Electron paramagnetic resonance detection of the giant concentration of nitrogen vacancy defects in sintered detonation nanodiamonds, J. Exp. Theor. Phys. Lett., 2010, vol. 92, no. 2, pp. 102–106.CrossRefGoogle Scholar
  46. 46.
    Sung, J.C. and Lin, J., Diamond Nanotechnology: Syntheses and Applications, Singapore: Pan Stanford Publishing Pte. Ltd., 2010.Google Scholar
  47. 47.
    Surendiran, A., Sandhiya, S., Pradhan, S.C., and Adithan, C., Novel applications of nanotechnology in medicine, Indian J. Med. Res., 2009, vol. 130, pp. 689–701.PubMedGoogle Scholar
  48. 48.
    Thanh, N.T.K. and Green, L.A.W., Functionalisation of nanoparticles for biomedical applications, Nano Today, 2010, vol. 5, pp. 213–230.CrossRefGoogle Scholar
  49. 49.
    Tran, P.A., Zhang, L., and Webster, T.J., Carbon nanofibers and carbon nanotubes in regenerative medicine, Adv. Drug Deliv. Rev., 2009, vol. 61, pp. 1097–1114.CrossRefPubMedGoogle Scholar
  50. 50.
    Vasilyeva, E.Yu., Prokhorenkov, V.I., Puzyr, A.P., and Bondar, V.S., The effects of nanodiamonds at the action of colored metal ions on the skin of guinea pigs, J. Biomater. Nanobiotech., 2016, vol. 7, pp. 214–224.CrossRefGoogle Scholar
  51. 51.
    Wang, D.X., Tong, Y.L., Li, Y.Q., Tian, Z.M., Cao, R.X., and Yang, B.S., PEGylated nanodiamond for chemotherapeutic drug delivery, Diam. Relat. Mater., 2013, vol. 36, pp. 26–34.CrossRefGoogle Scholar
  52. 52.
    Xiao, J., Duan, X., Yin, Q., Zhang, Z., Yu, H., and Li, Y., Nanodiamonds-mediated doxorubicin nuclear delivery to inhibit lung metastasis of breast cancer, Biomaterials, 2013, vol. 34, pp. 9648–9656.CrossRefPubMedGoogle Scholar
  53. 53.
    Zamborini, F.P., Bao, L., and Dasari, R., Nanoparticles in measurement science, Anal. Chem., 2012, vol. 84, pp. 541–576.CrossRefPubMedGoogle Scholar
  54. 54.
    Zhang, X., Wang, A.Q., Liu, M., Hui, J., Yang, B., Tao, L., and Wei, Y., Surfactant-dispersed nanodiamond: biocompatibility evaluation and drug delivery applications, Toxicol. Res., 2013, vol. 2, pp. 335–342.CrossRefGoogle Scholar
  55. 55.
    Zhou, Z., Liposome formulation of fullerene-based molecular diagnostic and therapeutic agents, Pharmaceutics, 2013, vol. 5, pp. 525–541.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Zhu, Y., Li, J., Zhang, Y., Yang, X., Chen, N., Sun, Y., Zhao, Y., Fan, C., and Huang, Q., The biocompatibility of nanodiamonds and their application in drug delivery systems, Teranostics, 2012, vol. 2, pp. 302–312.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • E. V. Inzhevatkin
    • 1
    Email author
  • A. V. Baron
    • 2
    • 3
  • N. G. Maksimov
    • 4
  • M. B. Volkova
    • 1
    • 3
  • A. P. Puzyr
    • 2
  • V. S. Bondar
    • 2
  1. 1.International Scientific Center for Studies of Extreme States of Organisms, Federal Research Center Krasnoyarsk Science Center, Siberian Branch, Russian Academy of SciencesKrasnoyarskRussia
  2. 2.Institute of Biophysics, Federal Research Center Krasnoyarsk Science Center, Siberian Branch, Russian Academy of SciencesKrasnoyarskRussia
  3. 3.Siberian Federal UniversityKrasnoyarskRussia
  4. 4.Institute of Chemistry and Chemical Technology, Federal Research Center Krasnoyarsk Science Center, Siberian Branch, Russian Academy of SciencesKrasnoyarskRussia

Personalised recommendations