Biology Bulletin

, Volume 45, Issue 6, pp 557–563 | Cite as

Odor Stimulation and Relation to Taste Stimuli in the Blind Cave Fish Astyanax fasciatus

  • A. O. KasumyanEmail author
  • E. A. Marusov


The influence of odor stimulation with solutions of the amino acids L-glutamine and L-phenylalanine on the response of the cave fish Astyanax fasciatus (blind form) to the taste of agar pellets with L-glutamine and L-phenylalanine has been studied. It has been established that the odors used cause a food search behavior in fish, but do not affect the orosensory testing of the pellets. It is noted that the taste characteristics of both amino acids differ in the evaluation of the extraoral and oral taste systems, which indicates food selectivity in the blind cave fish, the food of which in its habitats is extremely monotonous. The attitude to the taste of amino acids is stable with a different smell background and a changing combination of odor and taste stimuli.



The experimental part of this work was supported by the Russian Foundation for Basic Research (project no. 16-04-00322); processing of primary data and analysis of results were supported by the Russian Science Foundation “Depository” (project no. 14-50-00029).


Сonflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.


  1. 1.
    Atema, J., Chemical senses, chemical signals and feeding behaviour in fishes, in Fish Behaviour and Its Use in the Capture and Culture of Fishes, Manila: International Center for Living Aquatic Resources Management, 1980, pp. 57–101.Google Scholar
  2. 2.
    Atema, J., Holland, K., and Ikehara, W., Olfactory responses of yellowfin tuna (Thunnus albacares) to prey odors: chemical search image, J. Chem. Ecol., 1980, vol. 6, no. 2, pp. 457–465.CrossRefGoogle Scholar
  3. 3.
    Bensonilah, M. and Denizot, J.-P., Taste buds and neuromasts of Astyanax jordani: distribution and immunochemical demonstration of co-localized substance P and enkephalins, Eur. J. Neurosci., 1991, vol. 3, pp. 407–414.CrossRefGoogle Scholar
  4. 4.
    Bibliowicz, J., Alie, A., Espinasa, L., Yoshizawa, M., Blin, M., Hinaux, H., Legendre, L., Pere, S., and Retaux, S., Differences in chemosensory response between eyed and eyeless Astyanax mexicanus of the Rio Subterréneo cave, EvoDevo, 2013, 4:25.CrossRefGoogle Scholar
  5. 5.
    Boudriot, F. and Reutter, K., Ultrastructure of the taste buds in the blind cave fish Astyanax jordani (“Anoptichthys”) and the sighted river fish Astyanax mexicanus (Teleostei, Characidae), J. Comp. Neurol., 2001, vol. 434, pp. 428–444.CrossRefGoogle Scholar
  6. 6.
    Breder, C.M., Jr. and Rasquin, P., Chemical sensory reactions in the Mexican blind characin, Zoologica, 1943, vol. 28, pp. 160–200.Google Scholar
  7. 7.
    Breder, C.M., Jr. and Rasquin, P., Comparative studies in the light sensitivity of blind characins from a series of Mexican caves, Bull. Amer. Museum Natural History, 1947, vol. 89, art. 5, pp. 319–352.Google Scholar
  8. 8.
    Espinasa, L., Bonaroti, N., Wong, J., Pottin, K., Queinnec, E., and Retaux, S., Contrasting feeding habits of post-larval and adult Astyanax cavefish, Subterr. Biol., 2017, vol. 21, pp. 1–17.CrossRefGoogle Scholar
  9. 9.
    Franz-Odendaal, T.A. and Hall, B.K., Modularity and sense organs in the blind cavefish, Astyanax mexicanus, Evol. Dev., 2006, vol. 8, no. 1, pp. 94–100.CrossRefGoogle Scholar
  10. 10.
    Hinaux, H., Devos, L., Blin, M., Elipot, Y., Bibliowicz, J., Alie, A., and Retaux, S., Sensory evolution in blind cavefish is driven by early embryonic events during gastrulation and neurulation, J. Exp. Biol., 2016, vol. 143, pp. 4521–4532.Google Scholar
  11. 11.
    Jeffery, W.R., Cavefish as a model system in evolutionary developmental biology, Dev. Biol., 2001, vol. 231, pp. 1–12.CrossRefGoogle Scholar
  12. 12.
    Kasumyan, A.O., Gustatory reception and feeding behavior in fish, J. Ichthyol., 1997, vol. 37, no. 1, pp. 72–86.Google Scholar
  13. 13.
    Kasumyan, A. and Døving, K.B., Taste preferences in fish, Fish Fisheries, 2003, vol. 4, no. 4, pp. 289–347.CrossRefGoogle Scholar
  14. 14.
    Kasumyan, A.O., Marusov, E.A., and Sidorov, S.S., The effect of food odor background on gustatory preferences and gustatory behavior of carp Cyprinus carpio and cod Gadus morhua, J. Ichthyol., 2009, vol. 49, no. 6, pp. 469–482.CrossRefGoogle Scholar
  15. 15.
    Kasumyan, A.O. and Marusov, E.A., Chemoorientation in the feeding behavior of the blind Mexican cavefish Astyanax fasciatus (Characidae, Teleostei), Russ. J. Ecol., 2015, vol. 46, no. 6, pp. 559–563.CrossRefGoogle Scholar
  16. 16.
    Kasumyan, A.O. and Marusov, E.A., Selective feeding in fish: effect of feeding and defensive motivations evoked by natural odors, Biol. Bull. Rev., 2016, vol. 6, no. 1, pp. 70–83.CrossRefGoogle Scholar
  17. 17.
    Lebedeva, N.E., Kasumyan, A.O., and Golovkina, T.V., The correction of the physiological status of carp Cyprinus carpio by natural chemical signals, J. Ichthyol., 2000, vol. 40, no. 3, pp. 258–265.Google Scholar
  18. 18.
    Mikhailova, E.S., Vinogradskaya, M.I., and Kasumyan, A.O., Assessment of the palatability of artificial and natural stimuli and feeding behavior of Astyanax fasciatus, in Povedenie Ryb: Mater. Dokl. V Vseros. Konf. (Fish Behavior: Proc. V All-Russia Conf.), Kostroma: Kostromskoi pechatnyi dom, 2014, pp. 154–158.Google Scholar
  19. 19.
    Mikhailova, E.S. and Kasumyan, A.O., Orosensory food testing in fish: chronology of behavior, Biol. Bull. (Moscow), 2016, vol. 43, no. 4, pp. 318–328.CrossRefGoogle Scholar
  20. 20.
    Mitchell, R.W., Russell, W.H., and Elliott, W.R., Mexican eyeless characin fishes, genus Astyanax: environment, distribution, and evolution, Spec. Publ. Mus. Texas Tech. Univ., 1977, vol. 12, pp. 1–89.Google Scholar
  21. 21.
    Olsén, K.H., Sawisky, G.R., and Stacey, N.E., Endocrine and milt responses of male crucian carp (Carassius carassius L.) to periovulatory females under field conditions, Gen. Comp. Endocrinol., 2006, vol. 149, pp. 294–302.CrossRefGoogle Scholar
  22. 22.
    Patton, P., Windsor, S., and Coombs, S., Active wall following by Mexican blind cavefish (Astyanax mexicanus), J. Comp. Physiol. A, 2010, vol. 196, pp. 853–867.CrossRefGoogle Scholar
  23. 23.
    Pavlov, D.S. and Kasumyan, A.O., The structure of the feeding behavior of fishes, J. Ichthyol., 1998, vol. 38, no. 1, pp. 116–128.Google Scholar
  24. 24.
    Popper, A.N., Auditory capacities of the Mexican blind cave fish (Astyanax jordani) and its eyed ancestor (Astyanax mexicanus), Anim. Behav., 1970, vol. 18, pp. 552–562.CrossRefGoogle Scholar
  25. 25.
    Protas, M., Tabansky, I., Conrad, M., Gross, J.B., Vidal, O., Tabin, C.J., and Borowsky, R., Multy-trait evolution in cave fish, Astyanax mexicanus, Evol. Dev., 2008, vol. 10, no. 2, pp. 196–209.CrossRefGoogle Scholar
  26. 26.
    Rehnberg, B.G. and Schreck, C.B., Chemosensory detection of predators by coho salmon (Onchorhyncus kisutch): behavioral reaction and physiological stress response, Can. J. Zool., 1987, vol. 65, pp. 481–485.CrossRefGoogle Scholar
  27. 27.
    Schemmel, C., Vergleichende Untersuchungen an den Hautsinnesorganen ober- und unterirdisch lebender Astyanax-Formen, Z. Morphol. Tiere, 1967, vol. 61, pp. 255–316.CrossRefGoogle Scholar
  28. 28.
    Schemmel, C., Studies on the genetics of feeding behaviour in the cave fish Astyanax mexicanus f. anoptichthys. An example of apparent monofactorial inheritance by polygenes, Z. Tierpsychol., 1980, vol. 53, pp. 9–22.CrossRefGoogle Scholar
  29. 29.
    Stacey, N.E., Van Der Kraak, G.J., and Olsén, K.H., Male primer endocrine responses to preovulatory female cyprinids under natural conditions in Sweden, J. Fish. Biol., 2012, vol. 80, pp. 147–165.CrossRefGoogle Scholar
  30. 30.
    Tan, D., Patton, P., and Coombs, S., Do blind cave fish have behavioral specializations for active flowsensing, J. Comp. Physiol. A, 2011, vol. 197, pp. 743–754.CrossRefGoogle Scholar
  31. 31.
    Tandler, A., Berg, B.A., Kissil, G.W., and Mackie, A.M., Effect of food attractants on appetite and growth rate of gilthead sea bream (Sparus aurata L.), J. Fish. Biol., 1982, vol. 20, pp. 673–681.CrossRefGoogle Scholar
  32. 32.
    Varatharasan, N., Croll, R.P., and Franz-Odendaal, T.A., Taste bud development and pattering in sighted and blind morphs of Astyanax mexicanus, Dev. Dyn., 2009, vol. 238, pp. 3056–3064.CrossRefGoogle Scholar
  33. 33.
    Wilkens, H., Zur phylogenetischen Rückbildung des Auges Cavernicoler: Untersuchungen an Anoptichthys jordani (=Astyanax mexicanus), Ann. Spéléol., 1972, vol. 27, pp. 411–432.Google Scholar
  34. 34.
    Wilkens, H., Evolution and genetics of epigean and cave Astyanax fasciatus (Characidae, Pisces) support for the neutral mutation theory, in Evolutionary Biology, Hecht, M.K. and Wallace, B., Eds., New York: Plenum Publ. Corp., 1988, vol. 23, pp. 271–367.Google Scholar
  35. 35.
    Windsor, S.P., Tan, D., and Montgomery, J.C., Swimming kinematics and hydrodynamic imaging in the blind Mexican cave fish (Astyanax fasciatus), J. Exp. Biol., 2008, vol. 211, pp. 2950–2959.CrossRefGoogle Scholar
  36. 36.
    Yoshizawa, M., Gorčiki, Š., Soares, D., and Jeffery, W.R., Evolution of a behavioural shift mediated by superficial neuromasts helps cavefish find food in darkness, Curr. Biol., 2010, vol. 20, pp. 1631–1636.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Severtsov Institute of Ecology and EvolutionMoscowRussia

Personalised recommendations