Advertisement

Biology Bulletin

, Volume 45, Issue 4, pp 299–309 | Cite as

Energetic Macroevolution of Vertebrates

Theoretical and Evolutionary Biology

Abstract

An analysis of our own data and published data on comparable standard metabolism in vertebrates has been carried out. It was shown that within each family and most of the orders this parameter varies insignificantly and the mean values for the comparable standard metabolism are grouped around certain values presumably corresponding to the stationary states to which organisms aspire in the course of evolution. There was a significant difference in the comparable standard metabolism in poikilothermic and homeothermic animals, apparently related to the existence of a heat barrier, which is overcome by the appearance of thermoregulation. In total, seven levels of stationary states were distinguished for vertebrates and 12 of them for all animals. It was established that the ratio of the values of the comparable standard metabolism for neighboring levels varies insignificantly and is ~2.2. It was noted that in the process of macroevolution of phyla and classes, their constituent units occupy ever higher stationary levels. A possible mechanism of transition from one stationary level to another is discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AmphibiaWeb, 2017. http://www.amphibiaweb.org/.Google Scholar
  2. Avibase—The World Bird Database, 2017. https://avibase. bsc-eoc.org/.Google Scholar
  3. Bennett, A.F. and Dawson, W.R., Metabolism, in Biology of the Reptilia, Gans, C. and Dawson, W.R., Eds., New York: Acad. Press, 1976, vol. 5, pp. 127–223.Google Scholar
  4. Brody, S., Bioenergetics and Growth, New York: Reinhold, 1945.Google Scholar
  5. BOLD: The Barcode of Life Data System, 2017. http://www.boldsystems.org.Google Scholar
  6. Brown, G.W., The metabolism of Amphibia, in Physiology of the Amphibia, Moore, J.A., Ed., New York: Acad. Press, 1964, pp. 1–98.Google Scholar
  7. Dinosaur World, 2017. http://dinosaur-world.com/.Google Scholar
  8. Dol’nik, V.R., Energy metabolism and evolution of animals, Usp. Sovrem. Biol., 1968, vol. 66, no. 5, pp. 276–293.PubMedGoogle Scholar
  9. FishBase. A Global Information System on Fishes, 2017. http://www.fishbase.org/.Google Scholar
  10. Hails, C.J., The metabolic rate of tropical birds, Condor, 1983, vol. 85, no. 1, pp. 61–65.CrossRefGoogle Scholar
  11. Hofman, M.A., Energy metabolism, brain size and longevity in mammals, Quart. Rev. Biol., 1983, vol. 58, no. 4, pp. 495–512.CrossRefPubMedGoogle Scholar
  12. Hopson, J.A., Relative brain size and behaviour in archosaurian reptiles, Ann. Rev. Ecol. System., Johnston, R.F., Frank, P.W., and Michener, C.B., Eds., 1977, vol. 8, pp. 429–448.CrossRefGoogle Scholar
  13. Human Echo Development, Human Development (Humanity). Human Intelligence, Extinct, and Extant Animals, 2010. http://alligater.org/publ/3-1-0-367.Google Scholar
  14. ITIS. The Integrated Taxonomic Information System, 2017. www.itis.gov/.Google Scholar
  15. Ivanter, E.V. and Korosov, A.V., Elementarnaya biometriya (Elementary Biometrics), Petrozavodsk: Izd. PetrGU, 2010.Google Scholar
  16. Ivlev, V.S., Experience in assessing the evolutionary significance of the levels of energy metabolism, Zh. Obshch. Biol., 1959, vol. 20, no. 6, pp. 94–103.Google Scholar
  17. Kendeigh, S.C., Dol’nik, V.R., and Gavrilov, V.M., Avian energetics, in Carnivorous Birds in Ecosystems. Intern. Biol. Program, Cambridge: Univ. Press, 1977, vol. 12, pp. 127–204.Google Scholar
  18. Carroll, R., Paleontologiya i evolyutsiya pozvonochnykh (Paleontology and Evolution of Vertebrates), Moscow: Mir, 1993, vol. 2.Google Scholar
  19. King, J.K. and Farner, D.S., Energy metabolism, thermoregulation and body temperature, in Biology and Comparative Physiology of Birds, Marshall, A.J., Ed., New York: Acad. Press, 1961, vol. 2, pp. 215–288.Google Scholar
  20. Malek-Mansur, M., Nikolis, G., and Prigozhin, I., Nonequilibrium phase transitions in chemical systems, in Termodinamika i kinetika biologicheskikh protsessov (Thermodynamics and Kinetics of Biological Processes), Moscow: Nauka, 1980, pp. 59–83.Google Scholar
  21. Mammals’Planet, 2017. http://www.planet-mammiferes.org/.Google Scholar
  22. Osnovy paleontologii. Spravochnik dlya paleontologov i geologov SSSR (Fundamentals of Paleontology. A Handbook for Paleontologists and Geologists of the USSR), vol. 13: Mlekopitayushchie (Mammals), Orlov, Yu.A., Ed., Moscow: Gos. Nauch.-Tekhn. Izd. Lit. po geologii i okhrane nedr, 1962.Google Scholar
  23. Osnovy paleontologii. Spravochnik dlya paleontologov i geologov SSSR (Fundamentals of Paleontology. A Handbook for Paleontologists and Geologists of the USSR), vol. 11: Beschelyustnye, ryby (Agnatha, Pisces), Orlov, Yu.A., Ed., Moscow: Nauka, 1964a.Google Scholar
  24. Osnovy paleontologii. Spravochnik dlya paleontologov i geologov SSSR (Fundamentals of Paleontology. A Handbook for Paleontologists and Geologists of the USSR), vol. 12: Zemnovodnye, presmykayushchiesya i ptitsy (Amphibians, Reptiles, and Birds) Orlov, Yu.A., Ed., Moscow: Nauka, 1964b.Google Scholar
  25. Paleobiology Database, Fossilworks, 2017. http://fossilworks. org.Google Scholar
  26. Panteleev, P.A., Bioenergetika melkikh mlekopitayushchikh (Bioenergetics of Small Mammals), Moscow: Nauka, 1983.Google Scholar
  27. Prigogine, I. and Nicolis, G., Biological order, structure and instabilities, Quart. Rev. Biophys., 1971, vol. 4, nos. 2/3, pp. 107–148.CrossRefGoogle Scholar
  28. Prigogine, I., Exploring complexity, Eur. J. Operational Res., 1987, vol. 30, no. 2, pp. 97–103.CrossRefGoogle Scholar
  29. Severtsov, A.S., Napravlennost’ evolyutsii (Directed Evolution), Moscow: Izd. MGU, 1990.Google Scholar
  30. Shapiro, S.S. and Wilk, M.B., An analysis of variance test for normality, Biometrika, 1965, vol. 52, no. 3, pp. 591–611.CrossRefGoogle Scholar
  31. Schmalhausen, I.I., Problemy darvinizma (Problems of Darwinism), Leningrad: Nauka, 1969.Google Scholar
  32. Strel’nikov, I.D., Anatomo-fiziologicheskie osnovy vidoobrazovaniya pozvonochnykh (Anatomical and Physiological Bases of Speciation of Vertebrates), Leningrad: Nauka, 1970.Google Scholar
  33. Taigen, T.L., Activity metabolism of anuran amphibians: implications for the origin of endothermy, Am. Nat., 1983, vol. 121, no. 1, pp. 94–109.CrossRefPubMedGoogle Scholar
  34. The Global Biodiversity Information Facility (GBIF), 2017. http://www.gbif.org. The Reptile Database, 2017. http://reptile-database.reptarium. cz/.Google Scholar
  35. Vinberg, G.G., Intensivnost’ obmena i pishchevye potrebnosti ryb (The Intensity of Metabolism and Nutritional Needs of Fishes), Minsk: Izd. Belorus. Univ., 1956.Google Scholar
  36. Vladimirova, I.G. and Serbinova, I.A., Respiration rate depending on body weight in some representatives of the caudate and anuran amphibians, Zh. Obshch. Biol., 1992, vol. 53, no. 5, pp. 744–749.PubMedGoogle Scholar
  37. Vladimirova, I.G. and Zotin, A.I., Dannye o vliyanii temperatury na potreblenie kisloroda u zhivotnykh (Data on the Effect of Temperature on Oxygen Consumption in Animals), vol. 1: Mlekopitayushchie (Mammals), Deposited at VINITI, 1986, no. 3659-V86.Google Scholar
  38. Vladimirova, I.G. and Zotin, A.I., Standard metabolism in Amphibia, Izv. Akad. Nauk, Ser. Biol., 1994, no. 1, pp. 81–92.Google Scholar
  39. WoRMS Editorial Board, World Register of Marine Species, 2017. http://www.marinespecies.org.Google Scholar
  40. Xu, X., Norell, M.A., Kuang, X., Wang, X., Zhao, Q., and Jia, Ch., Basal tyrannosauroids from China and evidence for protofeathers in tyrannosauroids, Nature, 2004, vol. 431, no. 7009, pp. 680–684.CrossRefPubMedGoogle Scholar
  41. Zar, J.H., Standard metabolism comparisons between orders of birds, Condor, 1968, vol. 70, no. 3, pp. 278–279.CrossRefGoogle Scholar
  42. Zotin, A.I., Classification of birds by energy metabolism, in Aktualne problmy aviarnej genetiky, Smolenice: Slovensk. Acad., 1979, pp. 33–55.Google Scholar
  43. Zotin, A.I., Bioenergetic directionality of the evolutionary progress of organisms, in Termodinamika i regulyatsiya biologicheskikh protsessov (Thermodynamics and Regulation of Biological Processes), Moscow: Nauka, 1984, pp. 269–274.Google Scholar
  44. Zotin, A.I., Progressivnaya evolyutsiya zhivotnykh. 2. Koeffitsient entsefalizatsii i prodolzhitel’nost’ zhizni v klasse mlekopitayushchikh (Progressive Evolution of Animals. 2. Encephalization Coefficient and Lifespan in Mammalia), Deposited at VINITI, 1993, no. 763-V93.Google Scholar
  45. Zotin, A.A., Statistical estimation of allometric coefficients, Biol. Bull. (Moscow), 2000, vol. 27, no. 5, pp. 431–437.Google Scholar
  46. Zotin, A.A., Energetic macroevolution of invertebrates, Biol. Bull. (Moscow), 2018, vol. 45, no. 1, pp. 1–10.CrossRefGoogle Scholar
  47. Zotin, A.I. and Vladimirova, I.G., Data on the Standard Metabolism of Animals. 1. Mammals: All Orders Except Dermoptera, Tubulidentata, and Rodentia, Deposited at VINITI, 1986a, no. 3660–V86.Google Scholar
  48. Zotin, A.I. and Vladimirova, I.G., Data on the Standard Metabolism of Animals. 2. Mammals: Rodents, Deposited at VINITI, 1986b, no. 5903–V86.Google Scholar
  49. Zotin, A.I. and Vladimirova, I.G., Macrosystematics of mammals by the energy metabolism criteria, Izv. Akad. Nauk SSSR, Ser. Biol., 1991, no. 1, pp. 59–69.Google Scholar
  50. Zotin, A.I. and Vladimirova, I.G., Data on the Standard Metabolism of Animals. 5. Amphibia, Deposited at VINITI, 1993, no. 764-V93.Google Scholar
  51. Zotin, A.I. and Zotin, A.A., Progressive evolution: thermodynamic basis, Izv. Akad. Nauk, Ser. Biol., 1995, no. 4, pp. 389–397.Google Scholar
  52. Zotin, A.I. and Zotin, A.A., Napravlenie, skorost’ i mekhanizmy progressivnoi evolyutsii (termodinamicheskie osnovy biologicheskoi evolyutsii) (Direction, Rate, and Mechanismsof Progressive Evolution (Thermodynamic Principles of Biological Evolution)), Moscow: Nauka, 1999.Google Scholar
  53. Zotin, A.I. and Zotin, A.A., Data on oxygen consumption Amphioxiformes Agnatha Pisces, 2017a. https://www.researchgate. net/publication/313360503_Data_on_oxygen_consumption_Amphioxiformes_Agnatha_Pisces.Google Scholar
  54. Zotin, A.I. and Zotin, A.A., Data on oxygen consumption Aves, 2017b. https://www.researchgate.net/publication/313841971_Data_on_oxygen_consumption_Aves.Google Scholar
  55. Zotin, A.I. and Zotin, A.A., Data on oxygen consumption Reptilia, 2017c. https://www.researchgate.net/publication/313361441_Data_on_oxygen_consumption_Reptilia.Google Scholar
  56. Zotin, A.I., Vladimirova, I.G., and Kirpichnikov, A.A., Energy metabolism and direction of the evolutionary progress in Mammalia, Zh. Obshch. Biol., 1990, vol. 51, no. 6, pp. 760–767.PubMedGoogle Scholar
  57. Zotin, A.A., Lamprecht, I., and Zotin, A.I., Heat barriers in progressive evolution of animals and humans, Biol. Bull. (Moscow), 1998, vol. 25, no. 3, pp. 247–252.Google Scholar
  58. Zotin, A.A., Lamprecht, I., and Zotin, A.I., Bioenergetic progress and heat barriers, J. Non-Equilib. Thermodyn., 2001, vol. 26, pp. 191–202.CrossRefGoogle Scholar
  59. Zotin, A.I., Vladimirova, I.G., and Zotin, A.A., Data on oxygen consumption Amphibia. 2017a. https://www.researchgate. net/publication/313360995_Data_on_oxygen_consumption_Amphibia.Google Scholar
  60. Zotin, A.I., Vladimirova, I.G., and Zotin, A.A., Data on oxygen consumption Mammalia. 2017b. https://www.researchgate. net/publication/313841970_Data_on_oxygen_consumption_Mammalia.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Kol’tsov Institute of Developmental BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations