Biology Bulletin

, Volume 45, Issue 2, pp 186–191 | Cite as

Chronic Mild Stress Increases the Expression of Genes Encoding Proinflammatory Cytokines in the Rat Brain

  • M. Yu. Stepanichev
  • D. I. Peregud
  • A. O. Manolova
  • N. A. Lazareva
  • M. V. Onufriev
  • N. V. Gulyaeva
Animal and Human Physiology
  • 3 Downloads

Abstract

Alterations in the expression of genes encoding interleukins IL-1α, IL-1β, IL-6, and tumor necrosis factor-α (TNF-α) were studied in the rat brain in a model of a depressive disorder. We found that the signs of a depressionlike condition in rats, subjected to eight weeks of chronic mild unpredictable stress, were accompanied by increased IL-1α and IL-1β mRNAs levels in the neocortex, hippocampus, and brainstem and a decreased IL-6 mRNA level in the brainstem as compared to those observed in the control animals. We did not find any changes in the level of TNF-α mRNA. We suggest that region-specific alterations in the expression of cytokine genes, specifically, the most prominent increase in IL-1β expression, reflects greater vulnerability of chronically stressed animals to neuroinflammatory processes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Arlington, VA: Amer. Psychiatric Publ., 2013.Google Scholar
  2. Blandino, P., Jr., Barnum, C.J., Solomon, L.G., Larish, Y., Lankow, B.S., and Deak, T., Gene expression changes in the hypothalamus provide evidence for regionally-selective changes in IL-1 and microglial markers after acute stress, Brain Behav. Immun., 2009, vol. 23, pp. 958–968.CrossRefPubMedGoogle Scholar
  3. Bufalino, C., Hepgul, N., Aguglia, E., and Pariante, C.M., The role of immune genes in the association between depression and inflammation: a review of recent clinical studies, Brain Behav. Immun., 2013, vol. 31, pp. 31–47.CrossRefPubMedGoogle Scholar
  4. Catena-Dell’Osso, M., Bellantuono, C., Consoli, G., Baroni, S., Rotella, F., and Marazziti, D., Inflammatory and neurodegenerative pathways in depression: a new avenue for antidepressant development?, Curr. Med. Chem., 2011, vol. 18, pp. 245–255.CrossRefPubMedGoogle Scholar
  5. Chunhua, M., Lingdong, K., Hongyan, L., and Zhangqiang, M., Umbelliferone reverses depression-like behavior in chronic unpredictable mild stress-induced mice via RIP140/NF-kB pathway, IUBMB Life, 2016. (Epub ahead of print.)Google Scholar
  6. Cohen, B.E., Edmondson, D., and Kronish, I.M., State of the art review: depression, stress, anxiety, and cardiovascular disease, Am. J. Hypertens., 2015, vol. 28, pp. 1295–1302.PubMedGoogle Scholar
  7. Czéh, B., Fuchs, E., Wiborg, O., and Simon, M., Animal models of major depression and their clinical implications, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, vol. 64, pp. 293–310.CrossRefPubMedGoogle Scholar
  8. Dantzer, R., Cytokine, sickness behavior, and depression, Immunol. Allergy Clin. North. Am., 2009, vol. 29, pp. 247–264.CrossRefGoogle Scholar
  9. Della, F.P., Abelaira, H.M., Réus, G.Z., Antunes, A.R., Dos Santos, M.A., Zappelinni, G., Steckert, A.V., Vuolo, F., Galant, L.S., Dal-Pizzol, F., Kapczinski, F., and Quevedo, J., Tianeptine exerts neuroprotective effects in the brain tissue of rats exposed to the chronic stress model, Pharmacol. Biochem. Behav., 2012, vol. 103, pp. 395–402.CrossRefPubMedGoogle Scholar
  10. Dowlati, Y., Herrmann, N., Swardfager, W., Liu, H., Sham, L., Reim, E.K., and Lanctôt, K.L., A meta-analysis of cytokines in major depression, Biol. Psychiatry, 2010, vol. 67, pp. 446–457.CrossRefPubMedGoogle Scholar
  11. Farooq, R.K., Isingrini, E., Tanti, A., Le Guisquet, A.M., Arlicot, N., Minier, F., Leman, S., Chalon, S., Belzung, C., and Camus, V., Is unpredictable chronic mild stress (UCMS) a reliable model to study depression-induced neuroinflammation?, Behav. Brain Res., 2012, vol. 231, pp. 130–137.CrossRefPubMedGoogle Scholar
  12. Gleason, O.C., Fucci, J.C., Yates, W.R., and Philipsen, M.A., Preventing relapse of major depression during interferonalpha therapy for hepatitis C—a pilot study, Dig. Dis. Sci., 2007, vol. 52, pp. 2557–2563.CrossRefPubMedGoogle Scholar
  13. Grigoryan, G.A. and Gulyaeva, N.V., Animal models of depression: behavior as the basis for methodology, assessment criteria and classifications, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2015, vol. 65, pp. 643–660.Google Scholar
  14. de Kloet, E.R. and Molendijk, M.L., Coping with the forced swim stressor: towards understanding an adaptive mechanism, Neural Plasticity, 2016, vol. 2016. ID 6503162Google Scholar
  15. Kronfol, Z. and Remick, D.G., Cytokines and the brain: implications for clinical psychiatry, Am. J. Psychiatry, 2000, vol. 157, pp. 683–694.CrossRefPubMedGoogle Scholar
  16. Kubera, M., Obuchowicz, E., Goehler, L., Brzeszcz, J., and Maes, M., In animal models, psychosocial stressinduced (neuro)inflammation, apoptosis and reduced neurogenesis are associated to the onset of depression, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, vol. 35, pp. 744–759.Google Scholar
  17. Litvak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2-??Ct method, Methods, 2001, vol. 25, pp. 402–408.CrossRefGoogle Scholar
  18. Loftis, J.M., Patterson, A.L., Whelm, C.J., McNett, H., Morasco, B.J., Huckans, M., Morgan, T., Saperstein, S., Asghar, A., and Hauser, P., Vulnerabity to somatic symptoms of depression during interferon-alpha therapy for hepatitis C: a 16-week prospective study, J. Psychosom. Res., 2013, vol. 74, pp. 57–63.CrossRefPubMedGoogle Scholar
  19. Luo, Y., Kuang, S., Xue, L., and Yang, J., The mechanism of 5-lipoxygenase in the impairment of learning and memory in rats subjected to chronic unpredictable mild stress, Physiol. Behav., 2016, vol. 167, pp. 145–153.CrossRefPubMedGoogle Scholar
  20. Myint, A.M. and Kim, Y.K., Cytokine-serotonin interaction through IDO: a neurodegeneration hypothesis of depression, Med. Hypotheses, 2003, vol. 61, pp. 519–525.CrossRefPubMedGoogle Scholar
  21. De Pablo, J.M., Parra, A., Segovia, S., and Guillamon, A., Learned immobility explains the behavior of rats in the forced swimming test, Physiol. Behav., 1989, vol. 46, pp. 229–237.CrossRefPubMedGoogle Scholar
  22. Papp, M., Models of affective illness: chronic mild stress in the rat, Curr. Protoc. Pharmacol., 2012, ch. 5, unit 5.9.Google Scholar
  23. Pesarico, A.P., Sartori, G., Brüning, C.A., Mantovani, A.C., Duarte, T., Zeni, G., and Nogueira, C.W., A novel isoquinoline compound abolishes chronic unpredictable mild stress-induced depressive-like behavior in mice, Behav. Brain Res., 2016, vol. 307, pp. 73–83.CrossRefPubMedGoogle Scholar
  24. Piskunov, A.K., Yakovlev, A.A., Stepanichev, M.Yu., Onufriev, M.V., and Gulyaeva, N.V., Selective vulnerability of the hippocampus to interoceptive streßs: effects on interleukin- 1β and erythropoietin, Neurochem. J., 2011, vol. 28, pp. 191–193.CrossRefGoogle Scholar
  25. Piskunov, A., Stepanichev, M., Tishkina, A., Novikova, M., Levshina, I., and Gulyaeva, N., Chronic combined stress induces selective and long-lasting inflammatory response evoked by changes in corticosterone accumulation and signaling in rat hippocampus, Metab. Brain Dis., 2016, vol. 31, pp. 445–454.CrossRefPubMedGoogle Scholar
  26. Porsolt, R.D., Le Pichon, M., and Jalfre, M., Depression: a new animal model sensitive to antidepressant treatments, Nature, 1977, vol. 266, pp. 730–732.CrossRefPubMedGoogle Scholar
  27. Porterfield, V.M., Zimomra, Z.R., Caldwell, E.A., Camp, R.M., Gabella, K.M., and Johnson, J.D., Rat strain differences in restraint stress-induced brain cytokines, Neuroscience, 2011, vol. 188, pp. 48–54.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Pugh, C.R., Nguyen, N.T., Goyea, J.L., Fleshner, M., Wakins, L.R., Maier, S.F., and Rudy, J.W., Role of interleukin- 1beta in impairment of contextual fear conditioning caused by social isolation, Behav. Brain Res., 1999, vol. 106, pp. 109–118.CrossRefPubMedGoogle Scholar
  29. Rizvia, S.J., Pizzagalli, D.A., Sprouled, B.A., and Kennedy, S.H., Assessing anhedonia in depression: potentials and pitfalls, Neurosci. Biobehav. Rev., 2016, vol. 65, pp. 21–35.CrossRefGoogle Scholar
  30. Sapolsky, R., Rivier, C., Yamamoto, G., Plotsky, P., and Vale, W., Interleukin-1 stimulates the secretion of hypothalamic corticotrophin-releasing factor, Science, 1987, vol. 238, pp. 522–524.CrossRefPubMedGoogle Scholar
  31. Shelton, R.C., Claiborne, J., Sidoryk-Wegrzynowicz, M., Reddy, R., Aschner, M., Lewis, D.A., and Mirnics, K., Altered expression of genes involved in inflammation and apoptosis in frontal cortex in major depression, Mol. Psychiatry, 2011, vol. 16, pp. 751–762.CrossRefPubMedGoogle Scholar
  32. Stepanichev, M.Yu., Cytokines as neuromodulators in the central nervous system, Neirokhimiya, 2005, vol. 22, pp. 6–11.Google Scholar
  33. Stepanichev, M.Y., Zdobnova, I.M., Yakovlev, A.A., Onufriev, M.V., Lazareva, N.A., Zarubenko, I.I., and Gulyaeva, N.V., Effects of tumor necrosis factor-alpha central administration on hippocampal damage in rat induced by amyloid beta-peptide (25–35), J. Neurosci. Res., 2003, vol. 71, pp. 110–120.CrossRefPubMedGoogle Scholar
  34. Stepanichev, M., Dygalo, N.N., Grigoryan, G., Shishkina, G.T., and Gulyaeva, N., Rodent models of depression: neurotrophic and neuroinflammatory biomarkers, Biomed. Res. Int., 2014, vol. 2014, p. 932757.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Stepanichev, M.Yu., Tishkina, A.O., Novikova, M.R., Levshina, I.P., Piskunov, A.K., Lazareva, N.A., and Gulyaeva, N.V., Effects of chronic combined stress: changes in the behavior of rats with different response to novelty, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2016, vol. 66, pp. 543–553.Google Scholar
  36. Stepanichev, M.Yu., Tishkina, A.O., Novikova, M.R., Levshina, I.P., Freiman, S.V., Onufriev, M.V., Levchenko, O.A., Lazareva, N.A., and Gulyaeva, N.V., Anhedonia but not passive floating is an indicator of depressive-like behavior in two chronic stress paradigms, Acta Neurobiol. Exp. (Wars.), 2016a, vol. 76, pp. 324–333.Google Scholar
  37. Tao, W., Dong, Y., Su, Q., Wang, H., Chen, Y., Xue, W., Chen, C., Xia, B., Duan, J., and Chen, G., Liquiritigenin reverses depression-like behavior in unpredictable chronic mild stress-induced mice by regulating PI3K/Akt/mTOR mediated BDNF/TrkB pathway, Behav. Brain Res., 2016, vol. 308, pp. 177–186.CrossRefPubMedGoogle Scholar
  38. Willner, P., Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation, Psychopharmacology (Berl.), 1997, vol. 134, pp. 319–329.Google Scholar
  39. Willner, P., Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS, Neuropsychobiology, 2005, vol. 52, pp. 90–110.CrossRefPubMedGoogle Scholar
  40. Willner, P., Towell, A., Sampson, D., Sophokleous, S., and Muscat, R., Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant, Psychopharmacology (Berl.), 1987, vol. 93, pp. 358–364.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • M. Yu. Stepanichev
    • 1
  • D. I. Peregud
    • 2
  • A. O. Manolova
    • 1
  • N. A. Lazareva
    • 1
  • M. V. Onufriev
    • 1
    • 3
  • N. V. Gulyaeva
    • 1
    • 3
  1. 1.Institute of Higher Nervous Activity and NeurophysiologyRussian Academy of SciencesMoscowRussia
  2. 2.Research Institute on Addictions, Division of Serbskii Federal Medical Research Center on Psychiatry and AddictionMinistry of Health of the Russian FederationMoscowRussia
  3. 3.Moscow Research and Clinical Center for NeuropsychiatryMoscow Department of HealthcareMoscowRussia

Personalised recommendations