Biology Bulletin

, Volume 44, Issue 2, pp 128–136 | Cite as

Expression of genes, encoded defense proteins, in potato plants infected with the cyst-forming nematode Globodera rostochiensis (Wollenweber 1923) Behrens, 1975 and modulation of their activity during short-term exposure to low temperatures

  • V. V. Lavrova
  • E. M. Matveeva
  • S. V. Zinovieva


The expression of the principal genes providing an immune response in the roots of potato plants resistant and susceptible to the cyst nematode Globodera rostochiensis is investigated under conditions of infestation and with frequent variations in temperature. Differences in the immune status of resistant and susceptible potato cultivars are revealed in the level of expression of R-genes (H1 and Gro1-4), gene PAL, and defense genes of the PR-family (PR1, PR2, PR3, PR6). Varying the temperature changes the activity of transcriptome of susceptible plants towards activation of expression of R-genes, gene PAL, and defense genes; interactions between the plant and parasite are displaced towards induction of host resistance.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkinson, H.J., Urwin, P.E., Clarke, M.C., and McPherson, M.J., Image analysis of the growth of Globodera pallida and Meloidogyne incognita on transgenic tomato roots expressing cystatins, J. Nematol., 1996, vol. 28, no. 2, pp. 209–215.PubMedPubMedCentralGoogle Scholar
  2. Chen, Z., Zheng, Z., Huang, J., Lai, Z., and Fan, B., Biosynthesis of salicylic acid in plants, Plant Signal. Behav., 2009, vol. 4, no. 6, pp. 493–496.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Davis, E.L. and Mitchum, M.G., Nematodes. Sophisticated parasites of legumes, Plant Physiol., 2005, vol. 137, pp. 1182–1188.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Filatov, N.N., Nazarova, L.E., Salo, Yu.A., and Semenov, A.V., Dynamics and predictions of climate changes in Eastern Fennoscandia, in Gidroekologicheskie problemy Karelii i ispol’zovanie vodnykh resursov (Hydroecological Problems of Karelia and the Use of Water Resources), Petrozavodsk: KarNTs RAN, 2003, pp. 33–39.Google Scholar
  5. Gebhardt, C., Bellin, D., Henselewski, H., Lehmann, W., Schwarzfischer, J., and Valkonen, J.P.T., Marker-assisted combination of major genes for pathogen resistance in potato, Theor. Appl. Genet., 2006, vol. 112, pp. 1458–1464.CrossRefPubMedGoogle Scholar
  6. Halim, V.A., Eschen-Lippold, L., Altmann, S., Birschwilks, M., Scheel, D., and Rosahl, S., Salicylic acid is important for basal defense of Solanum tuberosum against Phytophthora infestans, MPMI, 2007, vol. 20, no. 11, pp. 1346–1352.CrossRefPubMedGoogle Scholar
  7. Hammond-Kozak, K.E., Atkinson, H.J., and Bowles, D.J., Change of abundance of translatable mRNA species in potato roots and leaves following root invasion by cystnematode G. rostochiensis, Physiol. Mol. Plant Pathol., 1990, vol. 37, pp. 339–354.CrossRefGoogle Scholar
  8. Haq, S.K., Atif, S.M., and Khan, R.H., Protein proteinase inhibitor genes in combat against insects, pests, and pathogens: natural and engineered phytoprotection, Arch. Biochem. Biophys., 2004, vol. 43, no. 1, pp. 145–159.Google Scholar
  9. Hamamouch, N., Li, C., Seo, P.J., Park, C.M., and Davis, E.L., Expression of Arabidopsis pathogenesisrelated genes during nematode infection, Mol. Plant Pathol., 2011, vol. 12, pp. 355–364.CrossRefPubMedGoogle Scholar
  10. Heil, M. and Bostock, R.M., Induced systemic resistance (ISR) against pathogens in the context of induced plant defenses, Ann. Bot., 2002, vol. 89, pp. 503–513.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Ieshko, E.P., Matveeva, E.M., and Gruzdeva, L.I., Experimental study of population aspects of host–parasite interaction: a case study of potato–golden potato cyst nematode Globodera rostochiensis, Parazitologiya, 1999, vol. 33, no. 4, pp. 340–349.Google Scholar
  12. Jiao, H.J., Wang, S.Y., and Civerolo, E.L., Lipid composition of citrus leaves from plant resistant and susceptible to citrus bacterial canker, J. Phytopathol., 1991, vol. 135, pp. 48–56.CrossRefGoogle Scholar
  13. Jones, J.D. and Dangl, J.L., The plant immune system, Nature, 2006, vol. 444, pp. 323–329.CrossRefPubMedGoogle Scholar
  14. Katagiri, F. and Tsuda, K., Understanding the plant immune system, MPMI, 2010, vol. 23, no. 12, pp. 1531–1536.CrossRefPubMedGoogle Scholar
  15. Kempster, V.N., Davies, K.A., and Scott, E.S., Chemical and biological induction of resistance to the cyst nematode (Heterodera trifolli) in white clover (Trifollium repens), Nematology, 2001, vol. 3, no. 1, pp. 35–43.CrossRefGoogle Scholar
  16. Kopytina, D.A., Kasenova, A.M., Omasheva, M.E., Kachieva, Z.S., and Galiakparov, N.N., Molecular bases of plant immunity, Biotekhnol. Teor. Prakt., 2012, no. 3, pp. 31–41.Google Scholar
  17. Lavrova, V.V., Response of potato plants to short-term exposure to low temperatures under conditions of infestation with nematodes: a physiological and biochemical aspect, Extended Abstract of Cand. Sci. (Biol.) Dissertation, St. Petersburg: BIN RAN, 2012.Google Scholar
  18. Lavrova, V.V., Sysoeva, M.I., and Matveeva, E.M., Fatty acid composition of potato leaf lipids in periodic and longterm hypothermia, Tr. KarNTs RAN, 2012, no. 2, pp. 91–96.Google Scholar
  19. Lavrova, V.V., Sysoeva, M.I., and Matveeva, E.M., Temperature priming—a base of enhanced plant resistance to phytonematode, Russ. J. Nematol., 2013, vol. 21, no. 2, p. 151.Google Scholar
  20. Lavrova, V.V., Matveeva, E.M., and Sysoeva, M.I., The effect of low-temperature preplanting treatment of potato tubers infested with potato cyst nematode, S.-Kh. Biol., 2014, no. 1, pp. 98–102.Google Scholar
  21. Van Loon, L.C., Rep, M., and Pieterse, C.M.J., Significance of inducible defense-related proteins in infected plants, Annu. Rev. Phytopathol., 2006, vol. 44, pp. 135–162.CrossRefPubMedGoogle Scholar
  22. Maleck, K., Levine, A., Eulgem, T., Morgan, A., Schmid, J., Lawton, K.A., Dangl, J.L., and Dietrich, R.A., The transcriptome of Arabidopsis thaliana during systemic acquired resistance, Nat. Genet., 2000, vol. 26, no. 4, pp. 403–410.CrossRefPubMedGoogle Scholar
  23. Markovskaya, E.F., Sysoeva, M.I., and Sherudilo, E.G., Kratkovremennaya gipotermiya i rastenie (Short-Term Hypothermia and Plant), Petrozavodsk: Izd. KarNTs RAN, 2013.Google Scholar
  24. Martin, G.B., Bogdanove, A., and Sessa, G., Understanding functions of plant disease resistance proteins, Annu. Rev. Plant Biol., 2003, vol. 54, pp. 23–61.CrossRefPubMedGoogle Scholar
  25. Matveeva, E.M., Diagnostics of cyst nematodes of the genus Globodera (Nematoda: Tylenchida), in Paraziticheskie nematody rastenii i nasekomykh (Parasitic Nematodes of Plants and Insects), Sonin, M.D., Eds., Moscow: Nauka, 2004.Google Scholar
  26. Matveeva, E., Lavrova, V., Sherudilo, E., Seppänen, M., and Palonen, P., Priming of potato plants by temperature for enhancement of resistance to cold stress and nematode invasion in the North, J. Nematol., 2014, vol. 46, no. 2, pp. 202–203.Google Scholar
  27. Mazid, M., Khan, T.A., and Mohammad, F., Role of secondary metabolites in defense mechanisms of plants, Biol. Med. Spec. Iss., 2011, vol. 3, no. 2, pp. 232–249.Google Scholar
  28. Mercer, C.F., Greenwood, D.R., and Grant, J.L., Effects of plant and microbial chitinases on the eggs and juveniles of Meloidogyne hapla Chitwood, Nematology, 1992, vol. 8, pp. 227–236.CrossRefGoogle Scholar
  29. Oka, Y., Chet, J., and Spiegel, Y., Are pathogenesis-related proteins induced by Meloidogyne javanica or Heterodera avenae invasion?, J. Nematol., 1997, vol. 29, no. 4, pp. 501–508.PubMedPubMedCentralGoogle Scholar
  30. Ozeretskovskaya, O.L., Vasyukova, N.I., Panina, Ya.S., and Chalenko, G.I., Effect of immunomodulators on potato resistance and susceptibility to Phytophthora infestans, Russ. J. Plant Physiol., 2006, vol. 53, no. 4, pp. 488–494.CrossRefGoogle Scholar
  31. Paramonov, A.A., Osnovy fitogel’mintologii (Basics of Phytohelminthology), Moscow: Izd. AN SSSR, 1962.Google Scholar
  32. Rahimi, S., Perry, R.N., and Wright, D.J., Identification of pathogenesis-related proteins induced in leaves of potato plants infected with potato cyst nematodes, Globodera species, Physiol. Molec. Plant. Pathol., 1996, vol. 49, pp. 49–59.CrossRefGoogle Scholar
  33. Rahimi, S., Wright, D.J., and Perry, R.N., Identification and localisation of chitinases induced in the roots of potato plants infected with the potato cyst nematode Globodera pallida, Fundam. Appl. Nematol., 1998, vol. 21, no. 6, pp. 705–713.Google Scholar
  34. Sade, D., Shriki, O., Cuadros-Inostroza, A., Tohge, T., Semel, Y., Haviv, Y., Willmitzer, L., Fernie, A.R., Czosnek, H., and Brotman, Y., Comparative metabolomics and transcriptomics of plant response to tomato yellow leaf curl virus infection in resistant and susceptible tomato cultivars, Metabolomics, 2015, vol. 11, pp. 81–97.CrossRefGoogle Scholar
  35. Seinhorst, J.W., Methods for the extraction of Heterodera cysts from not previously dried soil samples, Nematology, 1964, vol. 10, pp. 87–94.CrossRefGoogle Scholar
  36. Shafikova, T.N. and Omelichkina, Yu.V., Molecular–genetic aspects of plant immunity to phytopathogenic bacteria and fungi, Russ. J. Plant Physiol., 2015, vol. 62, no. 5, pp. 571–585.CrossRefGoogle Scholar
  37. Skupinova, S., Vejl, P., Sedlak, P., and Domkarova, J., Segregation of DNA markers of potato (Solanum tuberosum spp. tuberosum L.) resistance against Ro1 pathotype Globodera rostochiensis in selected F1 progeny, Rostlinna Vyroba, 2002, vol. 48, pp. 480–485.Google Scholar
  38. Solov’eva, G.I., Potaevich, E.V., Bogdanova, A.P., Makarycheva, I.V., and Kovalenko, T.E., Fiziologiya globoderorezistentnosti kartofelya (Physiology of Potato Resistance to Globodera), Leningrad: Nauka, 1989.Google Scholar
  39. Sysoeva, M.I., Lavrova, V.V., Markovskaya, E.F., Matveeva, E.M., and Sherudilo, E.G., Effect of daily short-term drops in temperature on the state of the photosynthetic apparatus of potato plants infested with phytoparasitic nematode, Tr. KarNTs RAN, 2010, no. 2, pp. 41–46.Google Scholar
  40. Sysoeva, M.I., Lavrova, V.V., Matveeva, E.M., Sherudilo, E.G., and Topchieva, L.V., Cross adaptation of potato plants to low temperatures and potato cyst nematode infestation, Russ. J. Plant Physiol., 2011, vol. 58, no. 6, pp. 999–1004.CrossRefGoogle Scholar
  41. Sysoeva, M.I., Lavrova, V.V., and Matveeva, E.M., Effect of short-term daily drops in temperature on the content of photosynthetic pigments in leaves infected with nematode, Tr. KarNTs RAN, 2013, no. 3, pp. 194–199.Google Scholar
  42. Tarchevsky, I.A., Signal’nye sistemy kletok rastenii (Signaling System of Plant Cells), Moscow: Nauka, 2002.Google Scholar
  43. Tarchevsky, I.A., Yakovleva, V.G., and Egorova, A.M., Salicylate-induced modification of plant proteomes (review), Appl. Biochem. Microbiol., 2010, vol. 46, no. 3, pp. 241–252.CrossRefGoogle Scholar
  44. Thakur, R. and Sohal, B.S., Role of elicitors in inducing resistance in plants against pathogen infections: a review, Hinadwi Publ. Corp. ISRN Biochem., 2013, Article ID 762412.Google Scholar
  45. Udalova, Zh.V. and Zinov’eva, S.V., Systemic induced plant resistance as a control strategy to parasites alternative to pesticides, Ecol. Eng. Envir. Protect., 2015, no. 2, pp. 59–66.Google Scholar
  46. Udalova, Zh.V., Revina, T.A., Gerasimova, N.A., and Zinov’eva, S.V., Participation of proteinase inhibitors in protection of tomato plants against root-knot nematodes, Dokl. Biol. Sci., 2014, vol. 458, no. 6, pp. 306–309.CrossRefPubMedGoogle Scholar
  47. Uehara, T., Sugiyama, S., Matsuura, H., Arie, T., and Masuta, C., Resistant and susceptible responses in tomato to cyst nematode are differentially regulated by salicylic acid, Plant Cell Physiol., 2010, vol. 51, no. 9, pp. 1524–1536.CrossRefPubMedGoogle Scholar
  48. Urwin, P.E., Green, J., and Atkinson, H.J., Resistance to Globodera spp. in transgenic Solanum tuberosum cv. Desirie that express proteinase inhibitors, Aspects Appl. Biol., 2000, no. 59, pp. 27–32.Google Scholar
  49. Vlot, A.C., Dempsey, D.A., and Klessig, D.F., Salicylic acid, a multifaceted hormone to combat disease, Annu. Rev. Phytopathol., 2009, vol. 47, pp. 177–206.CrossRefGoogle Scholar
  50. Walters, D., Walsh, D., Newton, A., and Lyon, G., Induced resistance for plant disease control: maximizing the efficacy of resistance elicitors, Phytopathology, 2005, vol. 95, pp. 1368–1373.CrossRefPubMedGoogle Scholar
  51. Wang, S.Y. and Maas, J.L., Relation on membrane lipid content in strawberry root to red stele (Phytophthora fragriae) resistance, Acta Horticult., 1997, pp. 863–867.Google Scholar
  52. Zang, S., Moyne, A.-L., Reddy, M.S., and Kloepper, J.W., The role of salicylic acid in induced systemic resistance elicited by plant growth-promoting rhizobacteria against blue mold of tobacco, Biol. Control, 2002, vol. 22, pp. 288–296.CrossRefGoogle Scholar
  53. Zhang, Y., Lubberstedt, T., and Xu, M., The genetic and molecular basis of plant resistance to pathogens, J. Gen. Genom., 2013, vol. 40, pp. 23–35.CrossRefGoogle Scholar
  54. Zinov’eva, S.V., Effect of protective response inducers on the formation of relationships in plant–parasitic nematode systems, Tr. INPA RAN, 2000, vol. 42, pp. 52–59.Google Scholar
  55. Zinov’eva, S.V., Relationships between plants and parasitic nematodes: immunobiological aspects, in Tr. Tsentra parazitologii IPEE RAN, Moscow: Nauka, 2012, vol. 47, pp. 77–90.Google Scholar
  56. Zinov’eva, S.V., Co-adaptation mechanisms in plant-nematode systems, Parazitologiya, 2014, vol. 48, no. 2, pp. 110–130.Google Scholar
  57. Zinov’eva, S.V., Vasyukova, N.I., Udalova, Zh.V., and Ozeretskovskaya, O.L., PR proteins in plants infested with the root-knot nematode Meloidogyne incognita (Kofoid et White, 1919) Chitwood 1949, Dokl. Biol. Sci., 2001, vol. 379, no. 5, pp. 393–395.CrossRefPubMedGoogle Scholar
  58. Zinov’eva, S.V., Vasyukova, N.I., Udalova, Zh.V., Perekhod, E.A., Gerasimova, N.G., and Ozeretskovskaya, O.L., Induction of PR proteins in plants infested with parasitic nematodes, Tr. Inst. Parazitol., 2002, vol. 43, pp. 125–132.Google Scholar
  59. Zinov’eva, S.V., Vasyukova, N.I., and Ozeretskovskaya, O.L., Biochemical aspects of plant interactions with phytoparasitic nematodes: a review, Appl. Biochem. Microbiol., 2004, vol. 40, no. 2, pp. 111–119.CrossRefGoogle Scholar
  60. Zinovieva, S.V., Vasyukova, N.I., Udalova, Zh.V., and Gerasimova, N.G., Involvement of salicylic acid in induction of nematode resistance in plants, Biol. Bull. (Moscow), 2011, vol. 38, no. 5, pp. 453–458.CrossRefGoogle Scholar
  61. Zinovieva, S.V., Vasyukova, N.I., Udalova, Zh.V., and Gerasimova, N.G., The participation of salicylic and jasmonic acids in genetic and induced resistance of tomato to Meloidogyne incognita (Kofoid and White, 1919), Biol. Bull. (Moscow), 2013, vol. no. 3, pp. 297–303.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • V. V. Lavrova
    • 1
  • E. M. Matveeva
    • 1
  • S. V. Zinovieva
    • 2
  1. 1.Institute of Biology, Karelian Research CenterRussian Academy of SciencesPetrozavodsk, Republic of KareliaRussia
  2. 2.Center of Parasitology, Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussia

Personalised recommendations