Biology Bulletin

, Volume 41, Issue 4, pp 372–377 | Cite as

Effects of neonatal fluvoxamine administration to white rats and their correction by semax treatment

  • M. A. Volodina
  • S. A. Merchieva
  • E. A. Sebentsova
  • N. Yu. Glazova
  • D. M. Manchenko
  • L. A. Andreeva
  • N. G. Levitskaya
  • A. A. Kamensky
  • N. F. Myasoedov
Human and Animal Physiology

Abstract

The aim of this work was to study the delayed effects of chronic neonatal administration of the selective serotonin reuptake inhibitor fluvoxamine (FA) to white rat pups and to estimate the possibility to correct these effects by treatment with semax. Fluvoxamine was injected intraperitoneally at a dose of 10 mg/kg from postnatal days 1 to 14, and semax was injected intranasally at a dose of 0.05 mg/kg from postnatal days 15 to 28. It was shown that neonatal FA administration produced a significant delay in animal somatic growth. A loss in body weight was detected both during FA administration and 4–6 weeks after the last injection. Furthermore, FA administration increased the anxiety level and disturbed the learning ability of animals. The negative consequences of neonatal FA administration were largely compensated by Semax.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anand, K.J., Effects of perinatal pain and stress, Prog. Brain Res., 2000, vol. 122, pp. 117–129.PubMedCrossRefGoogle Scholar
  2. Ansorge, M.S., Zhou, M., Lira, A., et al., Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice, Science, 2004, vol. 306, pp. 879–881.PubMedCrossRefGoogle Scholar
  3. Ashmarin, I.P., Nezavibatko, V.N., Levitskaya, N.G., et al., Design and investigation of an ACTH(4-10) analogue lacking D-amino acids and hydrophobic radicals, Neurosci. Res. Commun., 1995, vol. 16, no. 2, pp. 105–112.Google Scholar
  4. Ashmarin, I.P., Nezavibatko, V.N., Myasoedov, N.F., et al., Semax, a nootropic analog of ACTH 4–10 (15 years of experience in development and research), Zh. Vyssh. Nervn. Deyat., 1997, vol. 47, no. 2, pp. 426–436.Google Scholar
  5. Casper, R.C., Fleisher, B.E., Lee-Ancajas, J.C., et al., Follow-up of children of depressed mothers exposed or not exposed to antidepressant drugs during pregnancy, J. Pediatr., 2003, vol. 42, pp. 402–408.CrossRefGoogle Scholar
  6. Casper, R.C., Gilles, A.A., Fleisher, B.E., et al., Length of prenatal exposure to selective serotonin reuptake inhibitor (SSRI) antidepressants: effects on neonatal adaptation and psychomotor development, Psychopharmacology, 2011, vol. 217, pp. 211–219.PubMedCrossRefGoogle Scholar
  7. Diav-Citrin, O. and Ornoy, A., Selective serotonin reuptake inhibitors in human pregnancy: to treat or not to treat?,. Obstet. Gynecol. Int., 2012, vol. 2012, ID 698947.Google Scholar
  8. Dolotov, O.V., Karpenko, E.A., Inozemtseva, L.S., et al., Semax, an analog of ACTH(4-10) with cognitive effects, regulates BDNF and trkB expression in the rat hippocampus, Brain Res., 2006, vol. 1117, no. 1, pp. 54–60.PubMedCrossRefGoogle Scholar
  9. Eremin, K.O., Kudrin, V.S., Saransaari, P., Oja, S.S., et al., Semax, an ACTH(4-10) analogue with nootropic properties, activates dopaminergic and serotoninergic brain systems in rodents, Neurochem. Res., 2005, vol. 30, no. 12, pp. 1493–1500.PubMedCrossRefGoogle Scholar
  10. Hansen, H.H., Sanchez, C., and Meier, E., Neonatal administration of the selective serotonin reuptake inhibitor Lu 10-134-C increases forced swimming-induced immobility in 884 adult rats: a putative animal model of depression?,. J. Pharmacol. Exp. Ther., 1997, vol. 283, pp. 1333–1341.PubMedGoogle Scholar
  11. Harris, S.S., Maciag, D., Simpson, K.L., et al., Dosedependent effects of neonatal ssri exposure on adult behavior in the rat, Brain Res., 2012, vol. 1429, pp. 52–60.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Hrdina, P.D., Pharmacology of serotonin uptake inhibitors: focus on fluvoxamine, J. Psychiatry Neurosci., 1991, vol. 16, no. 2, pp. 10–18.PubMedCentralPubMedGoogle Scholar
  13. Karpova, N.N., Lindholm, J., Pruunsild, P., et al., Longlasting behavioural and molecular alterations induced by early postnatal fluoxetine exposure are restored by chronic fluoxetine treatment in adult mice, Europ. Neuropsychopharmacol., 2009, vol. 19, pp. 97–108.CrossRefGoogle Scholar
  14. Lee, L.J. and Lee, L.J.-H., Neonatal fluoxetine exposure alters motor performances of adolescent rats, Dev. Neurobiol., 2012, vol. 72, no. 8, pp. 1122–1132.PubMedCrossRefGoogle Scholar
  15. Maciag, D., Coppinger, D., and Paul, I.A., Evidence that the deficit in sexual behavior in adult rats neonatally exposed to citalopram is a consequence of 5-HT1 receptor stimulation during development, Brain Res., 2006a, vol. 1125, no. 1, pp. 171–175.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Maciag, D., Simpson, K.L., Coppinger, D., et al., Neonatal antidepressant exposure has lasting effects on behavior and serotonin circuitry, Neuropsychopharmacology, 2006b, vol. 31, pp. 47–57.PubMedCentralPubMedGoogle Scholar
  17. Marsella, M., Ubaldini, E., Solinas, A., and Guerrini, P., Prenatal exposure to serotonin reuptake inhibitors: a case report, Ital. J. Pediatr., 2010, vol. 36, pp. 27–29.PubMedCentralPubMedCrossRefGoogle Scholar
  18. Olivier, J.D.A., Blom, T., Arentsen, T., and Homberg, J.R., The age-dependent effects of selective serotonin reuptake inhibitors in humans and rodents, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, vol. 35, pp. 1400–1408.PubMedCrossRefGoogle Scholar
  19. Popa, D., Lena, C., Alexandre, C., and Adrien, J., Lasting syndrome of depression produced by reduction in serotonin uptake during postnatal development: evidence from sleep, stress, and behavior, J. Neurosci., 2008, vol. 28, pp. 3546–3554.PubMedCrossRefGoogle Scholar
  20. Rampono, J., Simmer, K., Ilett, K.F., et al., Placental transfer of SSRI and SNRI antidepressants and effects on the neonate, Pharmacopsychiatry, 2009, vol. 42, pp. 95–100.PubMedCrossRefGoogle Scholar
  21. Rind, H.B., Russo, A.F., and Whittemore, S.R., Developmental regulation of tryptophan hydroxylase messenger RNA expression and enzyme activity in the raphe and its target fields, Neuroscience, 2000, vol. 101, no. 3, pp. 665–677.PubMedCrossRefGoogle Scholar
  22. Sebentsova, E.A., Denisenko, A.V., Levitskaya, N.G., et al., Long-lasting behavioral effects of chronic neonatal treatment with ACTH (4–10) analogue semax in white rat pups, Zh. Vyssh. Nervn. Deyat., 2005, vol. 55, no. 2, pp. 213–220.Google Scholar
  23. Thompson, B.L., Levitt, P., and Stanwood, G.D., Prenatal exposure to drugs: effects on brain development and implications for policy and education, Neuroscience, 2009, vol. 10, pp. 303–312.PubMedCentralPubMedGoogle Scholar
  24. Verney, C., Lebrand, C., and Gaspar, P., Changing distribution of monoaminergic markers in the developing human cerebral cortex with special emphasis on the serotonin transporter, Anat. Rec., 2002, vol. 267, no. 2, pp. 87–93.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  • M. A. Volodina
    • 1
  • S. A. Merchieva
    • 1
  • E. A. Sebentsova
    • 2
  • N. Yu. Glazova
    • 2
  • D. M. Manchenko
    • 1
  • L. A. Andreeva
    • 2
  • N. G. Levitskaya
    • 2
  • A. A. Kamensky
    • 1
  • N. F. Myasoedov
    • 2
  1. 1.Biological FacultyMoscow State UniversityMoscowRussia
  2. 2.Institute of Molecular GeneticsRussian Academy of SciencesMoscowRussia

Personalised recommendations