Advertisement

Biology Bulletin

, Volume 40, Issue 6, pp 493–499 | Cite as

Bovine sperm chromatin is not protected from the effects of ultrasmall gold nanoparticles

  • S. T. ZakhidovEmail author
  • S. M. Pavlyuchenkova
  • A. V. Samoylov
  • N. M. Mudzhiri
  • T. L. Marshak
  • V. M. Rudoy
  • O. V. Dement’eva
  • I. A. Zelenina
  • S. G. Skuridin
  • Yu. M. Yevdokimov
Cell Biology

Abstract

The response of ejaculated bovine spermatozoa to gold nanoparticles was studied by the standard method of nuclear chromatin decondensation in vitro. After the treatment of semen samples with a hydrosol containing gold nanoparticles with an average diameter of ∼3.0 nm and a concentration of 1 × 1015 particles/mL, the ability of sperm nuclei to decondense in the presence of sodium dodecyl sulfate (SDS) and dithiothreitol (DTT) dramatically changed compared to the control. The frequencies of gametes with nondecondensed (“intact”), partially decondensed, and completely decondensed nuclei correlated as 40: 32: 28% and 0: 36: 64% in the experiment and the control, respectively. Moreover, the appearance of a sufficiently large number of gametes with destructed and almost completely destroyed nuclei was noticed in the spermatozoa treated with gold nanoparticles. This article suggests the putative mechanisms of action of ultrasmall gold nanoparticles on the structural and functional integrity of the deoxyribonucleoprotein (DNP) complex of mature male gametes.

Keywords

Gold Nanoparticles Protamine Biology Bulletin Semen Sample Male Germ Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Caglar, G.S., Hammadeh, M., Asimakopoulos, B., et al., In vivo and in vitro decondensation of human sperm and assisted reproduction technologies, In vivo, 2005, vol. 19, pp. 623–630.PubMedGoogle Scholar
  2. Cho, C., Willis, W.D., Goulding, E.H., et al., Haploinsufficiency of protamine-1 or -2 causes infertility in mice, Nat. Genet., 2001, vol. 28, pp. 82–86.PubMedGoogle Scholar
  3. Cho, C., Jung-Ha, H., Willis, W.D., et al., Protamine 2 deficiency leads to sperm DNA damage and embryo death in mice, Biol. Reprod., 2003, vol. 69, pp. 211–217.PubMedCrossRefGoogle Scholar
  4. Codrington, A.M., Hales, B.F., and Robaire, B., Exposure of male rats to cyclophosphamide alters the chromatin structure and basic proteome in spermatozoa, Hum. Reprod., 2007, vol. 22, pp. 1431–1442.PubMedCrossRefGoogle Scholar
  5. Dadoune, J.P., The nuclear status of human sperm cells, Micron, 1995, vol. 26, pp. 323–345.PubMedCrossRefGoogle Scholar
  6. Dadoune, J.P., Expression of mammalian spermatozoal nucleoproteins, Microsc. Res. Tech., 2003, vol. 61, pp. 56–75.PubMedCrossRefGoogle Scholar
  7. De, M., Ghosh, P.S., and Rotello, V.M., Applications of nanoparticles in biology, Adv. Mater., 2008, vol. 20, pp. 4225–4241.CrossRefGoogle Scholar
  8. Delbes, G., Hales, B.F., and Robaire, B., Toxicants and human sperm chromatin integrity, Mol. Hum. Reprod., 2010, vol. 16, pp. 14–22.PubMedCrossRefGoogle Scholar
  9. Duff, D.G., Baiker, A., and Edwards, P.P., A new hydrosol of gold clusters. 1. Formation and particle size variation, Langmuir, 1993, vol. 9, pp. 2301–2309.CrossRefGoogle Scholar
  10. Evdokimov, Yu.M., Salyanov, V.I., Kats, E.I., and Skuridin, S.G., Clusters of gold nanoparticles in quasinematic layers of particles of liquid crystalline dispersions of doublestranded nucleic acids, Acta Nat., 2012, vol. 4, pp. 80–93.Google Scholar
  11. Fuentes-Mascorro, G., Serrano, H., and Rosado, A., Sperm chromatin, Arch. Androl., 2000, vol. 45, pp. 215–225.PubMedCrossRefGoogle Scholar
  12. Goud, P.T., Goud, A.P., Rybouchkin, A.V., et al., Chromatin decondensation, pronucleus formation, metaphase entry and chromosome complements of human spermatozoa after intracytoplasmic sperm injection into hamster oocytes, Hum. Reprod., 1998, vol. 13, pp. 1336–1345.PubMedCrossRefGoogle Scholar
  13. Grenier, L., Robaire, B., and Hales, B.F., Paternal exposure to cyclophosphamide affects the progression of sperm chromatin decondensation and activates a DNA damage response in the prepronuclear rat zygote, Biol. Reprod., 2010, vol. 83, pp. 195–204.PubMedCrossRefGoogle Scholar
  14. Hekmatdoost, A., Lakpour, N., and Sadeghi, M.R., Sperm chromatin integrity: etiologies and mechanisms of abnormality, assays, clinical importance, preventing and repairing damage, Avicenna J. Med. Biotech., 2009, vol. 1, pp. 147–160.Google Scholar
  15. Hernandez-Ochoa, I., Sanchez-Gutierrez, M., SolisHeredia, M.J., and Quintanilla-Vega, B., Spermatozoa nucleus takes up lead during the epididymal maturation altering chromatin condensation, Reprod. Toxicol., 2006, vol. 21, pp. 171–178.PubMedCrossRefGoogle Scholar
  16. Huret, J.L., Variability of the chromatin decondensation ability test on human sperm, Arch. Androl., 1983, vol. 11, pp. 1–7.PubMedCrossRefGoogle Scholar
  17. Khlebtsov, N.G. and Dykman, L.A., Biodistribution and toxicity of gold nanoparticles, Ross. Nanotekhnol., 2010, vol. 6, pp. 39–59.Google Scholar
  18. Khlebtsov, N. and Dykman, L., Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies, Chem. Soc. Rev., 2011, vol. 40, pp. 1647–1671.PubMedCrossRefGoogle Scholar
  19. Lamberge, R.M. and Boissonneault, G., Chromatin remodeling in spermatids: a sensitive step for the genetic integrity of the male gamete, Arch. Androl., 2005, vol. 51, pp. 125–133.CrossRefGoogle Scholar
  20. Louis, C. and Pluchery, O., Gold Nanoparcticles for Physics, Chemistry and Biology, London: Imperial College Press, 2012.CrossRefGoogle Scholar
  21. Morozov, P.A., Ershov, B.G., Abkhalimov, E.V., et al., The influence of ozone on the plasmon absorption of gold hydrosols: quasi-metallic and metallic nanoparticles, Kolloidn. Zh., 2012, vol. 74, pp. 522–529.Google Scholar
  22. D’Occhio, M.J., Hengstberger, K.B., and Johnston, S.D., Biology of sperm chromatin structure and relationship to male fertility and embryonic survival, Anim. Reprod. Sci., 2007, vol. 101, pp. 1–17.PubMedCrossRefGoogle Scholar
  23. Oliva, R. and Ballesca, J.L., Proteomics of the spermatozoon, Balkan J. Med. Genet., 2012, suppl. 15, pp. 27–30.Google Scholar
  24. Pavlyuchenkova, S.M., Zakhidov, S.T., Makarov, A.A., and Marshak, T.L., Peculiarities of development of mouse male germ cells after intratesticular injection of dipin, Biol. Bull. (Moscow), 2012, vol. 39, no. 6, pp. 504–514.CrossRefGoogle Scholar
  25. Perreault, S.D., Barbee, R.R., Elstein, K.H., et al., Interspecies differences in the stability of mammalian sperm nuclei assessed in vivo by sperm microinjection and in vitro by flow cytometry, Biol. Reprod., 1988, vol. 39, pp. 157–167.PubMedCrossRefGoogle Scholar
  26. Quintanilla-Vega, B., Hoover, D.J., Bal, W., et al., Lead interaction with human protamine (HP2) as a mechanism of male reproductive toxicity, Chem. Res. Toxicol., 2000a, vol. 13, pp. 594–600.PubMedCrossRefGoogle Scholar
  27. Quintanilla-Vega, B., Hoover, D., Bal, W., et al., Lead effects on protamine-DNA binding, Am J. Ind. Med., 2000b, vol. 38, pp. 324–329.PubMedCrossRefGoogle Scholar
  28. Sakkas, D., Urner, F., Bianchi, P.G., et al., Sperm chromatin anomalies can influence decondensation after intracytoplasmic sperm injection, Hum. Reprod., 1996, vol. 11, pp. 837–843.PubMedCrossRefGoogle Scholar
  29. Sánchez-Vázquez, M.L., Reyes, R., Delgado, N.M., et al., Differential decondensation of class I (rat) and class II (mouse) spermatozoa nuclei by physiological concentrations of heparin and glutathione, Arch. Androl., 1996, vol. 36, pp. 161–176.PubMedCrossRefGoogle Scholar
  30. Sawyer, D.E. and Brown, D.B., Diminished decondensation and DNA synthesis inactivated sperm from rats treated with cyclophosphamide, Toxicol. Lett., 2000, vol. 114, pp. 19–26.PubMedCrossRefGoogle Scholar
  31. Skuridin, S.G., Dubinskaya, V.A., Shtykova, E.V., et al., Retention of gold nanoparticles in the structure of quasinematic layers formed by DNA molecules, Biochemistry (Moscow), Suppl. Ser. A: Membr. Cell Biol., 2011, vol. 5, no. 2, pp. 191–198.CrossRefGoogle Scholar
  32. Szczygiel, M.A. and Ward, W.S., Combination of dithiothreitol and detergent treatment of spermatozoa causes paternal chromosomal damage, Biol. Reprod., 2002, vol. 67, pp. 1532–1537.PubMedCrossRefGoogle Scholar
  33. Taylor, U., Petersen, S., Barchanski, A., et al., Effect of gold nanoparticles on reproductive cells of model animals, in 20th Ann. Conf. German Soc. Cytometry, October 13–15, 2010, Leipzig, Leipzig: Kubus Helmholtz-Centre Environ. Res., 2010.Google Scholar
  34. Taylor, U., Barchanski, A., Kues, W., et al., Impact of metal nanoparticles on germ cell viability and functionality, Reprod. Dom. Anim., 2012, vol. 47, suppl. 4, pp. 359–368.CrossRefGoogle Scholar
  35. Ward, M.A. and Ward, W.S., A model for the function of sperm DNA degradation, Reprod. Fertil Dev., 2004, vol. 16, pp. 547–554.PubMedCrossRefGoogle Scholar
  36. Ward, W.S., Function of sperm chromatin structural elements in fertilization and development, Mol. Hum. Reprod., 2010, vol. 16, pp. 30–36.PubMedCrossRefGoogle Scholar
  37. Wiwanitkit, V., Sereemaspun, A., and Rojanathanes, R., Effect of gold nanoparticles on spermatozoa: the firstworld report, Fertil. Steril., 2009, vol. 91, pp. 7–8.CrossRefGoogle Scholar
  38. Yevdokimov, Yu.M., Skuridin, S.G., Salyanov, V.I., et al., A dual effect of Au-nanoparticles on nucleic acid cholesteric liquid crystalline particles, J. Biomater. Nanotechnol., 2011, vol. 2, no. 4, pp. 461–471.CrossRefGoogle Scholar
  39. Zakhidov, S.T., Marshak, T.L., Malolina, E.A., et al., Gold nanoparticles disturb nuclear chromatin decondensation in mouse sperm in vitro, Biochemistry (Moscow), Suppl. Ser. A: Membr. Cell Biol., 2010, vol. 4, no. 3, pp. 293–296.CrossRefGoogle Scholar
  40. Zakhidov, S.T., Pavlyuchenkova, S.M., Marshak, T.L., et al., Effect of gold nanoparticles on mouse spermatogenesis, Biol. Bull. (Moscow), 2012, vol. 39, no. 3, pp. 229–236.CrossRefGoogle Scholar
  41. Zhang, X., Gabriel, M.S., and Zini, A., Sperm nuclear histone to protamine ratio in fertile and infertile men: evidence of heterogeneous subpopulations of spermatozoa in the ejaculate, J. Androl., 2006, vol. 27, pp. 414–420.PubMedCrossRefGoogle Scholar
  42. Zhao, M., Shirley, C.R., Hayashi, S., et al., Transition nuclear proteins are required for normal chromatin condensation and functional sperm development, Genesis, 2004, vol. 38, pp. 200–213.PubMedCrossRefGoogle Scholar
  43. Zini, A., Phillips, S., Courchesne, A., et al., Sperm head morphology is related to high deoxyribonucleic acid stainability assessed by sperm chromatin structure assay, Fertil. Steril., 2009, vol. 91, pp. 2495–2500.PubMedCrossRefGoogle Scholar
  44. Zirkin, B.R., Soucek, D.A., Chang, T.S.K., and Perreault, S.D., In vitro and in vivo studies of mammalian sperm nuclear decondensation, Gamete Res., 1985, vol. 11, pp. 349–365.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2013

Authors and Affiliations

  • S. T. Zakhidov
    • 1
    Email author
  • S. M. Pavlyuchenkova
    • 1
    • 2
  • A. V. Samoylov
    • 2
  • N. M. Mudzhiri
    • 1
    • 2
  • T. L. Marshak
    • 2
  • V. M. Rudoy
    • 3
  • O. V. Dement’eva
    • 3
  • I. A. Zelenina
    • 1
  • S. G. Skuridin
    • 4
  • Yu. M. Yevdokimov
    • 4
  1. 1.Biological FacultyMoscow State UniversityMoscowRussia
  2. 2.Koltzov Institute of Developmental BiologyMoscowRussia
  3. 3.Frumkin Institute of Physical Chemistry and ElectrochemistryMoscowRussia
  4. 4.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations