Biology Bulletin

, Volume 40, Issue 2, pp 169–178

Comparative histology of mushroom bodies in carnivorous beetles of the suborder polyphaga (Insecta, Coleoptera)

Zoology
  • 121 Downloads

Abstract

Mushroom bodies in beetles of the families Histeridae, Staphylinidae, Cantharidae, Trogossitidae, Peltidae, Cleridae, Malachiidae, and Coccinellidae are shown to be rather poorly developed. The calyx region of the mushroom bodies in these beetles never forms two separate cups, and the peduncular apparatus includes a unified shaft almost over its entire length. Only the pedunculus contains two separate shafts in a few cases. Two proliferative centers consisting of one to three neuroblasts are often found in each Kenyon cell group. The shift from carnivorous to feeding on pollen or leaves, which has taken place in some taxa, does not visibly affect the degree of mushroom body development.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brues, C.T., Observations on Wood-Boring Insects, Their Parasites and Other Associated Insects, Psyche, 1927, vol. 34, pp. 73–90.CrossRefGoogle Scholar
  2. Carré, S., Biologie de Deux Prédateurs de l’Abeille Solitaire Megachile rotundata F. (= pacifica Panz.) (Hymenoptera Megachilidae): Trichodes alvearius F. et Trichodes apiarius L. (Coleoptera, Cleridae). Methodes de Lutte, Apidologie, 1980, vol. 11, pp. 255–295.CrossRefGoogle Scholar
  3. Fahrbach, S., Structure of the Mushroom Bodies of the Insect Brain, Ann. Rev. Entomol., 2006, vol. 51, pp. 209–232.CrossRefGoogle Scholar
  4. Farris, S.M., Robinson, G.E., Davis, R.L., and Fahrbach, S.E., Larval and Pupal Development of the Mushroom Bodies in the Honey Bee, Apis mellifera, J. Comp. Neurol., 1999, vol. 414, pp. 97–113.PubMedCrossRefGoogle Scholar
  5. Farris, S.M. and Strausfeld, N.J., Development of Laminar Organization in the Mushroom Bodies of the Cockroach: Kenyon Cell Proliferation, Outgrowth, and Maturation, J. Comp. Neurol., 2001, vol. 439, pp. 331–351.PubMedCrossRefGoogle Scholar
  6. Giorgi, J.A., Vandenberg, N.J., McHugh, J.V., et al., The Evolution of Food Preferences in Coccinellidae, Biol. Control, 2009, vol. 51, pp. 215–231.CrossRefGoogle Scholar
  7. Grinfel’d, E.K., Anthophylia of Beetles (Coleoptera) and the Criticism of the Cantarophilic Hypothesis, Entomol. Obozr., 1975, vol. 54, no. 3, pp. 507–514.Google Scholar
  8. Ishii, Y., Kubota, K., and Hara, K., Postembryonic Development of the Mushroom Bodies in the Ant, Camponotus japonicus, Zool. Sci., 2005, vol. 22, pp. 743–753.PubMedCrossRefGoogle Scholar
  9. Janssen, W., Untersuchungen zur Morphologie, Biologie und Ökologie von Cantharis L. und Rhagonycha Eschsch. (Cantharidae, Col.), Zeitschr. Wiss. Zool., 1963, vol. 169, nos. 1–2, pp. 115–202.Google Scholar
  10. Jeannel, R., Traité de Zoologie, Vol. 9: Ordre des Coléoptéres, Paris: Masson et Cie, 1949.Google Scholar
  11. Kryzhanovskii, O.L., The Family Histeridae: Hister Beetles, in Opredelitel’ nasekomykh Evropeiskoi chasti SSSR (Identification Guide to the Insects of the European Part of the USSR), Vol. II: Zhestkokrylye i veerokrylye (Coleoptera and Strepsiptera), Moscow: Nauka, 1965, pp. 95–104.Google Scholar
  12. Larsson, M.C., Hansson, B.S., and Strausfeld, N.J., A Simple Mushroom Body in an African Scarabid Beetle, J. Comp. Neurol., 2004, vol. 478, pp. 219–232.PubMedCrossRefGoogle Scholar
  13. Malun, D., Early Development of Mushroom Bodies in the Brain of the Honeybee Apis mellifera as Revealed by BrdU Incorporation and Ablation Experiments, Learn. Mem., 1998, vol. 5, no. 1, pp. 90–101.PubMedGoogle Scholar
  14. Medvedev, L.N., Family Cantharidae: Leather-Winged Beetles, in Opredelitel’ nasekomykh Evropeiskoi chasti SSSR (Identification Guide to the Insects of the European Part of the USSR), Vol. II: Zhestkokrylye i veerokrylye (Coleoptera and Strepsiptera), Moscow: Nauka, 1965, pp. 221–227.Google Scholar
  15. Nikitskii, N.B., Nasekomye-khishchniki koroedov i ikh ekologiya (Insects Predators of Bark Beetles and Their Ecology), Moscow: Nauka, 1980.Google Scholar
  16. Ogura, N. and Hosoda, R., Rearing of a Coleopterous Predator, Trogossita japonica (Col.: Trogossitidae) on Artificial Diets, Entomophaga, 1995, vol. 40,parts 3–4, pp. 371–378.CrossRefGoogle Scholar
  17. Panov, A.A., The Structure of the Brain of Insects at Successive Stages of Postembryonic Development, Entomol. Obozr., 1957, vol. 36, no. 2, pp. 269–284.Google Scholar
  18. Panov, A.A., Structure of the Mushroom Bodies in Scarabaeoidea (Insecta: Coleoptera): 1. Basal Families and Coprophagous Scarabaeidae, Biol. Bull., 2010a, vol. 37, no. 5, pp. 502–510.CrossRefGoogle Scholar
  19. Panov, A.A., Structure of the Mushroom Bodies in Scarabaeoidea (Coleoptera): 2. Phytophagous Scarabaeidae and General Discussion, Biol. Bull., 2010b, vol. 37, no. 6, pp. 585–595.CrossRefGoogle Scholar
  20. Panov, A.A., Longicorn Beetles (Coleoptera: Cerambycidae) Differ Considerably in the Degree of Their Mushroom Body Development, Biol. Bull., 2011, vol. 38, no. 4, pp. 348–360.CrossRefGoogle Scholar
  21. Panov, A.A., Leaf Beetles (Coleoptera: Chrysomelidae): Mushroom Body Simplification in the Course of Progressive Evolution of the Family, Biol. Bull., 2012a, vol. 39, no. 1, pp. 29–35.CrossRefGoogle Scholar
  22. Panov, A.A., Mushroom Bodies of Carrion Beetles (Coleoptera, Silphidae), Zool. Zh., 2012b, vol. 91, no. 3, pp. 1–6.Google Scholar
  23. Romeis, B., Mikroskopicheskaya tekhnika (Microscopic Technique), Moscow: Inostr. Liter., 1953.Google Scholar
  24. Schicha, E., Morphologie und Funktion der Malachiidenmundwerkzeuge unter besonderer Berücksichtigung von Malachius bipustulatus L. (Coleopt., Malacodermata), Z. Morphol. Ökol. Tiere, 1967, vol. 60, pp. 376–433.CrossRefGoogle Scholar
  25. Shurovenkov, B.G., Biology and Significance of Malachiid Beetles (Coleoptera, Melyridae) as Entomophages in Fields of the Kursk Oblast, Entomol. Obozr., 1980, vol. 59, no. 3, pp. 535–543.Google Scholar
  26. Solodovnikov, A.Yu., Malachiid Beetles (Coleoptera, Malachiidae) of the Northwestern Caucasus, Entomol. Obozr., 1994, vol. 73, no. 3, pp. 666–681.Google Scholar
  27. Strausfeld, N.J., Sinakevitch, I., Brown, S.M., and Farris, S.M., Ground Plan of the Insect Mushroom Body: Functional and Evolutionary Implications, J. Comp. Neurol., 2009, vol. 513, pp. 265–291.PubMedCrossRefGoogle Scholar
  28. Tikhomirova, A.L., Morfo-ekologicheskie osobennosti i filogenez stafilinid (Morphological-Ecological Characteristics and Phylogeny of Staphylinidae), Moscow: Nauka, 1973.Google Scholar
  29. Traugott, M., The Prey Spectrum of Larval and Adult Cantharis Species in Arable Land: An Electrophoretic Approach, Pedobiology, 2003, vol. 47, no. 2, pp. 161–169.CrossRefGoogle Scholar
  30. Triltsch, H., Food Remains in the Guts of Coccinella septempunctata (Coleoptera: Coccinellidae) Adults and Larvae, Eur. J. Entomol., 1999, vol. 96, pp. 355–364.Google Scholar
  31. Zaslavskii, V.A., Family Coccinellidae: Ladybirds, in Opredelitel’ nasekomykh Evropeiskoi chasti SSSR (Identification Guide to the Insects of the European Part of the USSR), Vol. II: Zhestkokrylye i veerokrylye (Coleoptera and Strepsiptera), Moscow: Nauka, 1965, pp. 319–326.Google Scholar
  32. Zhao, X., Coptis, V., and Farris, S.M., Metamorphosis and Adult Development of the Mushroom Bodies of the Red Flour Beetle, Tribolium castaneum, Dev. Neurobiol., 2008, vol. 68, no. 13, pp. 1487–1502.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussia

Personalised recommendations