Biology Bulletin

, Volume 39, Issue 4, pp 323–330

Phylogeography of red deer (Cervus elaphus): Analysis of MtDNA cytochrome b polymorphism

  • M. V. Kuznetsova
  • A. A. Danilkin
  • M. V. Kholodova


Analysis of MtDNA cytochrome b gene (1140 bp) polymorphism of 106 samples red deer (Cervus elaphus) from different regions of Eurasia was performed; the phylogenetic relationships of groups throughout the entire inhibiting area (including North America) were reconstructed. Totally 75 haplotypes were detected, 33 of which were found in the European and 42 in the Asian part of the area. There were no identical haplotypes for these two parts of the area found. The close relatedness between Siberian red deer (C. e. sibirica) and North American wapiti (C. e. canadensis) was confirmed. Red deer inhibiting Yakutia were close to the Siberian red deer from Altai and Tuva, whereas red deer inhibiting Krasnoyarsk and Irkutsk regions formed a separate clade. Overall, the reconstructed phylogeographic pattern of the species was significantly different from the subspecies differentiation based on morphological traits.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bandelt, H.-J., Forster, P., and Ruhl, A., Median-Joining Networks for Inferring Intraspecific Phylogenies, Mol. Biol. Evol., 1999, vol. 16, pp. 37–48.PubMedCrossRefGoogle Scholar
  2. Danilkin, A.A., Mlekopitayushchie Rossii i sopredel’nykh regionov. Olen’i (Mammals of Russia and Adjacent Regions: Cervidae), Moscow: GEOS, 1999.Google Scholar
  3. Ellerman, J.R. and Morrison-Scot, T.C.S., Checklist of Palaearctic and Indian Mammals 1758 to British Museum (Nat. Hist.), L.: Brit. Mus. Press, 1946.Google Scholar
  4. Excoffier, L. and Lischer, H., Arlequin Suite ver. 3.5: A New Series of Programs to Perform Population Genetics Analyses under Linux and Windows, Mol. Ecol. Res., 2010, vol. 10, pp. 564–567.CrossRefGoogle Scholar
  5. Geptner, V.G. and Tsalkin, V.I., Oleni SSSR (sistematika i zoogeografiya) (Deer of the USSR (Systematics and Zoogeography)), Moscow: MOIP, 1947.Google Scholar
  6. Geptner, V.G., Nasimovich, A.A., and Bannikov, A.G., Mlekopitayushchie Sovetskogo Soyuza. Parnokopytnye i neparnokopytnye (Mammals of the Soviet Union. Artiodactyls and Solipeds), Moscow: Vyssh. Shkola, 1961, vol. 1.Google Scholar
  7. Groves, C., The Genus Cervus in Eastern Eurasia, Eur. J. Wildl. Res., 2006, vol. 52, pp. 14–22.CrossRefGoogle Scholar
  8. Grubb, P. and Gardner, A.L., List of Species and Subspecies of the Families Tragulidae, Moschidae, and Cervidae, in Deer Status Survey and Conservation Action Plan, IUCN/SSC Deer Specialist Group, Oxford: Inform. Press, 1998.Google Scholar
  9. Hall, T.A., BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT, Nucl. Acids Symp., 1999, vol. 41, pp. 95–98.Google Scholar
  10. Kimura, M., A Simple Method for Estimating Evolutionary Rate of Base Substitutions through Comparative Studies of Nucleotide Sequences, J. Mol. Evol., 1980, vol. 16, pp. 111–120.PubMedCrossRefGoogle Scholar
  11. Kocher, T.D., Thomas, W.K., Meyer, A., et al., Dynamics of Mitochondrial DNA Evolution in Animals: Amplification and Sequencing with Conserved Primers, Proc. Natl. Acad. Sci. USA, 1989, vol. 86, pp. 6196–6200.PubMedCrossRefGoogle Scholar
  12. Kumar, S., Dudley, J., Nei, M., and Tamura, K., MEGA: A Biologist-Centric Software for Evolutionary Analysis of DNA and Protein Sequences, Brief. Bioinform., 2008, vol. 9, pp. 299–306.PubMedCrossRefGoogle Scholar
  13. Kuznetsova, M.V., Volokh, A.M., Domnich, V.I., et al., Molecular-Genetic Study of the Red Deer, Cervus elaphus (Cervidae) in Eastern Europe, Vestn. Zool., 2007, vol. 41, no. 6, pp. 505–509.Google Scholar
  14. Lemmon, A.R. and Milinkovitch, M.C., The Metapopulation Genetic Algoritm: An Efficient Solution for the Problem of Large Phylogeny Estimation, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 10516–10521.PubMedCrossRefGoogle Scholar
  15. Lowe, V.W. and Gardiner, A.S., A Re-Examination of the Subspecies of Red Deer (Cervus elaphus) with Particular Reference to the Stocks in Britain, J. Zool., 1974, vol. 174, pp. 185–201.CrossRefGoogle Scholar
  16. Ludt, C.J., Schroeder, W., Rottmann, O., and Kuehn, R., Mitochondrial DNA Phylogeography of Red Deer (Cervus elaphus), Mol. Phylog. Evol., 2004, vol. 31, pp. 1064–1083.CrossRefGoogle Scholar
  17. Mahmut, H., Masuda, R., Onuma, M., et al., Molecular Phylogeography of the Red Deer (Cervus elaphus) Populations in Xinjiang of China: Comparison with Other Asian, European, and North American Populations, Zool. Sci., 2002, vol. 19, no. 4, pp. 485–495.PubMedCrossRefGoogle Scholar
  18. Pérez-Espona, S., Pérez-Barbería, F.J., Goodall-Copestake, W.P., et al., Genetic Diversity and Population Structure of Scottish Highland Red Deer (Cervus elaphus) Populations: A Mitochondrial Survey, Heredity (Edinb.), 2009, vol. 102, no. 2, pp. 199–210.CrossRefGoogle Scholar
  19. Wada, K., Okumura, K., Nishibori, M., et al., The Complete Mitochondrial Genome of the Domestic Red Deer (Cervus elaphus) of New Zealand and Its Phylogenic Position within the Family Cervidae, Anim. Sci. J., 2010, vol. 81, no. 5, pp. 551–557.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • M. V. Kuznetsova
    • 1
  • A. A. Danilkin
    • 1
  • M. V. Kholodova
    • 1
  1. 1.Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussia

Personalised recommendations