Biology Bulletin

, Volume 39, Issue 2, pp 172–185 | Cite as

Morphogenetic foundations for increased evolutionary complexity in the organization of thecate hydroids shoots (Cnidaria, Hydroidomedusa, Leptomedusae)

Conference Materials

Abstract

The morphogenetic approach is applied to analyze the diversity of spatial organization of shoots in thecate hydroids (Cnidaria, Hydroidomedusa, Leptomedusae). The main tendencies and constraints of increased evolutionary complexity in thecate hydroids colonies are uncovered.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beklemishev, V.N., Osnovy sravnitel’noi anatomii bespozvonochnykh (Principles of Comparative Anatomy of Invertebrates), in 2 Vols., Vol. 1: Promorfologiya (Promorphology), Moscow: Nauka, 1964.Google Scholar
  2. Beklemishev, K.V., Possible and Realized Directions in the Evolution of Invertebrates, Zh. Obshch. Biol., 1974, vol. 35, pp.209–222.PubMedGoogle Scholar
  3. Beloussov, L.V., Cell Movements in Morphogenesis of the Hydroid Polyp Campanularia integra, Zh. Obshch. Biol., 1960, vol. 21, pp.279–288.Google Scholar
  4. Beloussov, L.V., Cell Proliferation and Growth of Hydroids, Zh. Obshch. Biol., 1961a, vol. 22, pp.281–291.Google Scholar
  5. Beloussov, L.V., Vital Observation on Cell Migrations in Hydroid Obelia flexuosa, Dokl. Akad. Nauk SSSR, 1961b, vol. 136, pp.1490–1493.Google Scholar
  6. Beloussov, L.V. and Dorfman, Ya.G., Mechanisms of Growth and Morphogenesis in Hydroid Polyps by the Data of Time Lapse Microcinematography, Russian Journal of Developmental Biology, 1974, vol. 5, pp.437–445.Google Scholar
  7. Beloussov, L.V., Possible Ontogenetic Mechanisms Govering Formation of Principaql Morphogenetic Types of Thecaphoran Hydroids, Zh. Obshch. Biol., 1975, vol. 36, pp.203–211.Google Scholar
  8. Beloussov, L.V., Growth and Morphogenesis of Some Marine Hydrozoa according to Histological Data and Time-Lapse Studies, Publ. Seto Marine Biol. Lab., 1973, vol. 20, pp.315–366.Google Scholar
  9. Beloussov, L.V. and Dorfman, Y.G., On the Mechanics of Growth and Morphogenesis in Hydroid Polyps, Am. Zool., 1974, vol. 14, pp.719–734.Google Scholar
  10. Beloussov, L.V., Badenko, L.A., and Labas, J.A., Growth Rhythms and Species-Specific Shape in Thecaphora Hydroids, in Developmental and Cellular Biology of Coelenterates, Amsterdam: Elsevier/North-Holland Biomed. Press, 1980, pp.175–178.Google Scholar
  11. Beloussov, L.V., Basic Morphogenetic Processes in Hydrozoa and Their Evolutionary Implications: An Exercise in Rational Taxonomy, Hydrobiologia, 1991, vol. 216/217, pp.61–67.CrossRefGoogle Scholar
  12. Beloussov, L.V., Kazakova, N.I., and Labas, J.A., Growth Pulsations in Hydroid Polyps: Kinematics, Biological Role, and Cytophysiology, in Oscillations and Morphogenesis, New York: Marcel Dekker, 1993, pp.183–193.Google Scholar
  13. Berking, S., Hesse, M., and Herrmann, K., A Shoot Meristem-Like Organ in Animals; Monopodial and Sympodial Growth in Hydrozoa, Int. J. Dev. Biol., 2002, vol. 46, pp.301–308.PubMedGoogle Scholar
  14. Berking, S., Principles of Branch Formation and Branch Patterning in Hydrozoa, Int. J. Dev. Biol., 2006, vol. 50, pp.123–134.PubMedCrossRefGoogle Scholar
  15. Berrill, N.J., Growth and Form in Calyptoblastic Hydroids. I. Comparison of a Campanulid, Campanilarian, Sertularian and Plumularian, J. Morphol., 1949a, vol. 85, pp.297–335.PubMedCrossRefGoogle Scholar
  16. Berrill, N.J., The Polymorphic Transformations of Obelia, Quarterly J. Microsc. Sci., 1949b, vol. 90, pp.235–264.Google Scholar
  17. Bouillon, J. and Boero, F., The Hydrozoa: A New Classification in the Light of Old Knowledge, Thalassia Salentina, 2000, no. 24, pp.3–45.Google Scholar
  18. Bouillon, J., Medel, M.D., Pages, F., et al., Fauna of the Mediterranean Hydrozoa, Sci. Marina, 2004, vol. 68, pp.5–449.Google Scholar
  19. Braverman, M.H., Studies on Hydroid Differentiation. IV. Cell Movements in Podocoryne carnea hydranths, Growth, 1969, vol. 33, pp.99–111.PubMedGoogle Scholar
  20. Braverman, M.H., Studies on Hydroid Differentiation. VII. The Hydrozoan Stolon, J. Morphol., 1971, vol. 135, pp.131–152.PubMedCrossRefGoogle Scholar
  21. Braverman, M.H., The Cellular Basis of Hydroid Morphogenesis, Seto Marine Biol. Lab., 1973, vol. 20, pp.221–256.Google Scholar
  22. Braverman, M.H., The Cellular Basis for Colony Form in Podocoryne carnea, Am. Zool., 1974, vol. 14, pp.673–698.Google Scholar
  23. Campbell, R.D., Mechanisms of Hydrozoan Elongation, Am. Zool., 1966, vol. 6, p. 330.Google Scholar
  24. Campbell, R.D., Tissue Dynamics of Steady State Growth in Hydra littoralis. I. Patterns of Cell Division, Dev. Biol., 1967a, vol. 15, pp.487–502.PubMedCrossRefGoogle Scholar
  25. Campbell, R.D., Tissue Dynamics of Steady State Growth in Hydra littoralis. II. Patterns of Tissue Movement, J. Morphol., 1967b, vol. 121, pp.19–28.PubMedCrossRefGoogle Scholar
  26. Cherdantsev, V.G., Morfogenez i evolyutsiya (Morphogenesis and Evolution), Moscow: KMK, 2003.Google Scholar
  27. Costello, J.H., Colin, S.P., and Dabiri, J.O., Medusan Morphospace: Phylogenetic Constraints, Biomechanical Solutions, and Ecological Consequences, Invertebrate Biol., 2008, vol. 127, pp.265–290.CrossRefGoogle Scholar
  28. Crowell, S. and Rusk, M., Growth of Campanularia Colonies, Biol. Bull., 1950, vol. 99, pp.357–357.PubMedGoogle Scholar
  29. Crowell, S. and Wyttenbach, C.R., Factors Affecting Terminal Growth in the Hydroid Campanularia, Biol. Bull., 1957, vol. 113, pp.233–244.CrossRefGoogle Scholar
  30. Crowell, S., Differential Responses of Growth Zones to Nutritive Level, Age and Temperature in the Colonial Hydroid Campanularia, J. Exp. Zool., 1957, vol. 134, pp.63–90.PubMedCrossRefGoogle Scholar
  31. Crowell, S., Wyttenbach, C.R., and Suddith, R.L., Evidence Against the Concept of Growth Zones in Hydroids, Biol. Bull., 1965, vol. 129, p. 403.Google Scholar
  32. Davis, L.V., Growth and Development of Colonial Hydroids, in Experimental Coelenterate Biology, Honolilu: Univ. Hawaii Press, 1971, pp.16–36.Google Scholar
  33. Donakov, V.V., Cellular Organization of Colonial Hydroid Obelia loveni (Allm.) and Its Changes in Ontogenesis, in Extended Abstract of Candidate’s (Biol.) Dissertation, Leningrad: LGU, 1989.Google Scholar
  34. Donakov, V.V., Genikhovich, G.E., and Polteva, D.G., Development of Hydranth in Campanulariid Hydroids: Origin, Resorption, Regeneration, Zoosystem. Rossica, 1999, Suppl. 1, pp.135–144.Google Scholar
  35. Filatcheva, L.F., Morphogenesis of the Lateral Shoot of Hydroids Dynamena pumila, Biol. Nauki, 1966, no. 1, pp.7–13.Google Scholar
  36. Gilbert, S.F., Developmental Biology, Sunderland, Massachusetts: Sinauer Assoc. Inc.., 2003.Google Scholar
  37. Hale, L.J., Cell Movements, Cell Division and Growth in the Hydroid Clytia johnstoni, J. Embryol. Exp. Morphol., 1964, vol. 12, pp.517–538.PubMedGoogle Scholar
  38. Ho, M.W. and Saunders, P.T., Beyond Neo-Darwinism: An Epigenetic Approach to Evolution, J. Theor. Biol., 1979, vol. 78, pp.573–579.PubMedCrossRefGoogle Scholar
  39. Ho, M.W. and Saunders, P.T., The Epigenetic Approach to Evolution of Organisms-With Notes on Its Relevance to Social and Cultural Evolution, in Learning, Development and Culture, London: Wiley, 1982, pp.343–361.Google Scholar
  40. Ho, M.W., How Rational Can Rational Morphology Be? A Post-Darwinian Rational Taxonomy Based on a Structuralism of Process, Biol. Forum, 1988, vol. 81, pp.11–56.Google Scholar
  41. Ho, M.W., Rational Taxonomy and the Natural System, Acta Biotheoretica, 1993, vol. 41, pp.289–304.CrossRefGoogle Scholar
  42. Kosevich, I.A. and Marfenin, N.N., Colonial Morphology of the Hydroid Obelia longissima (Pallas, 1766) (Campanulariidae), Vestn. Mosk. Univ., Ser. 16: Biol., 1986, no. 3, pp.44–52.Google Scholar
  43. Kosevich, I.A., Comparision of Upright’s and Stolon’s Tips Function in Hydroid Colony Obelia loveni (Allm.) (Hydrozoa, Campanulariidae), Vestn. Mosk. Univ., Ser. 16: Biol., 1991, no. 2, pp.44–52.Google Scholar
  44. Kosevich, I.A., Morphogenetic Constraints in Thecate Hydroids, Vestn. Tv. Gos. Univ., Ser. Biol. Ecol., 2008, no. 9, pp.110–114.Google Scholar
  45. Kosevich, I.A., Development of Stolon’s and Stem’s Internodes in Hydroid Genera Obelia (Campanulariidae), Vestn. Mosk. Univ., Ser. 16: Biol., 1990, no. 3, pp.26–32.Google Scholar
  46. Kosevich, I.A., Regulation of Formation of the Elements of the Hydroid Polyps Colony, Russ. J. Dev. Biol., 1996, vol. 27, no. 2, pp.95–101.Google Scholar
  47. Kosevich, I.A., Cell Migration during Growth of Hydroid Colony, Zh. Obshch. Biol., 1999, vol. 60, pp.91–98.Google Scholar
  48. Kosevich, I.A., Morphology of Hydrocauli in Diphasia fallax (Johnston, 1847) (Hydrozoa, Sertulariidae), Tr. Belomor. Biol. St. im. N.A. Pertsova (Transactions of Pertsov’s White-Sea Station), Novikov, G.G., Eds., Moscow: KMK, 2003, pp.69–78.Google Scholar
  49. Kosevich, I.A., Mechanics of Growth Pulsations as the Basis of Growth and Morphogenesis in Colonial Hydroids, Russ. J. Dev. Biol., 2006, vol. 37, no. 2, pp.90–101.CrossRefGoogle Scholar
  50. Kosevich, I.A., Parametric System of Thecate Hydroids, Hydra and the Development of Animal Form, Tutzing: Evangelische Akad., 2007, p. 84.Google Scholar
  51. Kosevich, I.A. and Fedosov, A.E., Morphogenesis in Colonial Hydroids: Pulsating Rudiment Splitting, Russ. J. Dev. Biol., 2008, vol. 39, no. 5, pp.279–292.CrossRefGoogle Scholar
  52. Kosevich, I.A., Decoding the Morphogenetic Evolution of Thecate Hydroids, J. Marine Biol. Assoc. UK, 2008, vol. 88, pp.1687–1694.CrossRefGoogle Scholar
  53. Kosevitch, I.A., Herrmann, K., and Berking, S., Shaping of Colony Elements in Laomedea flexuosa Hinks (Hydrozoa, Thecaphora) Includes a Temporal and Spatial Control of Skeleton Hardening, Biol. Bull., 2001, vol. 201, pp.417–423.CrossRefGoogle Scholar
  54. Kuhn, A., Entwicklungsgeschichte und Verwandtschaftsbeziehungen der Hydrozoen. I. Teil: die Hydroiden, in Ergebnisse und Fortschritte der Zoologie, Jena: Verlag von Gustav Fischer, 1914, pp.1–284.Google Scholar
  55. Liubischev, A.A., Philosophical Aspects of Taxonomy, A. Rev. Ent., 1969, vol. 14, pp.19–38.CrossRefGoogle Scholar
  56. Makarenkova, E.P., Morphofunctional Analysis of the Structure of the Gastroderm of Colonial Hydroids of the Genus Obelia during Feeding and Morphogenesis, Extended Abstract of Candidate’s (Biol.) Dissertation, Leningrad: Zool. Inst. Akad. Nauk AN SSSR, 1989.Google Scholar
  57. Marfenin, N.N. and Kosevich, I.A., Biology of the Hydroid Obelia loveni (Allm.) (Campanulariidae): Colony Formation, Behavior, and Life Cycle of Hydrants, and Reproduction, Vestn. Mosk. Univ., Ser. 16: Biol., 1984a, no. 3, pp.16–24.Google Scholar
  58. Marfenin, N.N. and Kosevich, Colonial Morphology of the Hydroid Obelia loveni (Allm.) (Campanulariidae), Vestn. Mosk. Univ., Ser. 16: Biol., 1984b, no. 2, pp.37–46.Google Scholar
  59. Marfenin, N.N., Fenomen kolonial’nosti (The Phenomenon of Coloniality), Moscow: Izd. Mosk. Gos. Univ., 1993.Google Scholar
  60. Marfenin, N.N., Burykin, Yu.B., and Ostroumova, T.V., Organismal Regulation of Balanced Growth of a Hydroid Colony of Gonothyraea loveni (Allm.), Zh. Obshch. Biol., 1999, vol. 60, pp.80–90.Google Scholar
  61. Marfenin, N. and Kosevich, I., Morphogenetic Evolution of Hydroid Colony Pattern, Hydrobiologia, 2004, vol. 530–531, pp.319–327.CrossRefGoogle Scholar
  62. Medel, M.D. and Vervoort, W., Plumularian Hydroids (Cnidaria: Hydrozoa) from the Strait of Gibraltar and Nearby Areas, Zool. Verhandelingen Leiden, 1995, vol. 300, pp.1–72.Google Scholar
  63. Meinhardt, H., Models of Biological Pattern Formation: Common Mechanism in Plant and Animal Development, Int. J. Dev. Biol., 1996, vol. 40, pp.123–134.PubMedGoogle Scholar
  64. Naumov, D.V., Gidroidy i gidromeduzy morskikh, solonovatovodnykh i presnovodnykh basseinov SSSR (Hydroids and Hydrozoans of Marine, Brackish, and Freshwater Basins of the USSR), Moscow: Izd. Akad. Nauk SSSR, 1960.Google Scholar
  65. Notov, A.A., Concept of Modular Organization and the Problem of Organizational Polymorphism at Different Levels of Structural Hierarchy of Living Organisms, in Gomologii v botanike: opyt i refleksiya (Homologies in Botany: Experience and Reflection), St. Petersburg: S.-Peterburg. Soyuz Uchenykh, 2001, pp.119–128.Google Scholar
  66. Pyataeva, S.V. and Kosevich, I.A., Soft Tissue Organization in Some Sertulariid Colonial Hydroids (Hydrozoa: Sertulariidae), J. Marine Biol. Assoc. UK, 2008, vol. 88, pp.1703–1713.CrossRefGoogle Scholar
  67. Pyataeva, S.V. and Kosevich, I.A., The Morphological and Anatomical Characteristics of the Colonial Hydroid Sertularia mirabilis (Sertulariidae), Zool. Zh., 2008, vol. 87, pp.1–17.Google Scholar
  68. Reinhardt, D., Regulation of Phyllotaxis, Int. J. Dev. Biol., 2005, vol. 49, pp.539–546.PubMedCrossRefGoogle Scholar
  69. Von Schenck, D.A., Die Kormentektonik der Plumulariiden (Coelenterata, Hydrozoa), Rev. Suisse Zool., 1965, vol. 72, pp.885–1021.Google Scholar
  70. Schuchert, P., Review of the Family Haplopterididae (Hydrozoa, Cnidaria), Zool. Verhandelingen, 1997, vol. 309, pp.1–162.Google Scholar
  71. Suddith, R.L., Cell Proliferation in the Terminal Regions of the Internodes and Stolons of the Colonial Hydroid Campanularia flexuosa, Am. Zool., 1974, vol. 14, pp.745–755.Google Scholar
  72. Tardent, P., Regeneration in the Hydrozoa, Biol. Rev., 1963, vol. 38, pp.293–333.CrossRefGoogle Scholar
  73. Thomas, M.B. and Edwards, N.C., Cnidaria: Hydrozoa, in Placozoa, Porifera, Cnidaria, and Ctenophora, Harrison, F.W. and Westfall, J.A., Eds., New York: Wiley-Liss, Inc., 1991, pp.91–183.Google Scholar
  74. Thomas, R.D.K., Shearman, R.M., and Stewart, G.W., Evolutionary Exploitation of Design Options by the First Animals with Hard Skeletons, Science, 2000, vol. 288, pp.1239–1242.PubMedCrossRefGoogle Scholar
  75. Ubukata, T., Stacking Increments: A New Model and Morphospace for the Analysis of Bivalve Shell Growth, Historical Biol.: J. Paleobiol., 2001, vol. 15, pp.303–321.Google Scholar
  76. Wyttenbach, C.R., Crowell, S., and Suddith, R.L., The Cyclic Elongation of Stolons and Uprights in the Hydroid, Campanularia, Biol. Bull., 1965, vol. 129, p. 429.Google Scholar
  77. Wyttenbach, C.R., Sites of Mitotic Activity in the Colonial Hydroid, Campanularia flexuosa, Anat. Rec., 1965, vol. 151, p. 483.Google Scholar
  78. Wyttenbach, C.R., The Dynamics of Stolon Elongation in the Hydroid, Campanularia flexuosa, J. Exp. Zool., 1968, vol. 167, pp.333–352.CrossRefGoogle Scholar
  79. Wyttenbach, C.R., Genetic Variations in the Mode of Stolon Growth in the Hydroid, Campanularia flexuosa, Biol. Bull., 1969, vol. 137, pp.547–556.CrossRefGoogle Scholar
  80. Wyttenbach, C.R., Crowell, S., and Suddith, R.L., Variations in the Mode of Stolon Growth among Different Genera of Colonial Hydroids, and Their Evolutionary Implications, J. Morphol., 1973, vol. 139, pp.363–375.CrossRefGoogle Scholar
  81. Wyttenbach, C.R., Cell Movements Associated with Terminal Growth in Colonial Hydroids, Am. Zool., 1974, vol. 14, pp.699–717.Google Scholar
  82. Yagunova, E.B., Astrogenesis of Cribrilina annulata (Fabricius, 1780) (Bryozoa: Cheilostomata): Norm and Anomaly, Zool. Bespozv., 2005, vol. 2, pp.203–216.Google Scholar
  83. Zaraiskii, A.G., Belousov, L.V., Labas, Yu.A., and Badenko, L.A., Study of Cellular Mechanisms of Growth Pulsations in Hydroid Polyps, Ontogenez, 1984, vol. 15, pp.163–169.Google Scholar
  84. Zavarzin, G.A., Role of Combinatorial Events in the Development of Biodiversity, Priroda (Moscow, Russ. Fed.), 2002, vol. 1, pp.12–19.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Faculty of BiologyMoscow State UniversityMoscowRussia

Personalised recommendations