Advertisement

Biology Bulletin

, Volume 36, Issue 1, pp 1–5 | Cite as

The effect of dihydroquercetin on active and passive ion transport systems in plant vacuolar membrane

  • V. N. Nurminsky
  • N. V. Ozolina
  • J. G. Sapega
  • A. O. Zheleznykh
  • E. V. Pradedova
  • A. M. Korzun
  • R. K. Salyaev
Cell Biology

Abstract

The effect of dihydroquercetin (DHQ) on proton pumps of the vacuolar membrane (H+-ATPase and H+-pyrophosphatase), slow vacuolar (SV) channel, lipid peroxidation, and stability of isolated vacuoles was studied. The results of experiments showed that DHQ affected active and passive transport systems of the vacuolar membrane. The mechanism of action of DHQ may be based on its combined effect on the sulfhydryl groups of proteins and the lipid component of the membrane. The strong stabilizing effect of DHQ on the membranes of isolated vacuoles may be associated not only with its antioxidant properties but also with changes in the membrane permeability affecting the ion channels.

Keywords

Proton Pump Hydrolytic Activity Biology Bulletin Vacuolar Membrane Dihydroquercetin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Areias, F.M., Rego, A.C., Oliveira, C.R., and Seabra, R.M., Antioxidant Effect of Flavonoids after Ascorbate/Fe2+-Induced Oxidative Sstress in Cultured Retinal Cells, Biochem. Pharmacol., 2001, vol. 62, no. 1, pp. 111–118.PubMedCrossRefGoogle Scholar
  2. Bertl, A., Blumwald, E., Coronado, R., et al., Electrical Measurements on Endomembranes, Science, 1992, vol. 258, pp. 873–874.PubMedCrossRefGoogle Scholar
  3. Bradford, M., A Rapid and Sensitive Method for the Quantification of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding, Anal. Biochem., 1976, vol. 72, nos. 1–2, pp. 248–254.PubMedCrossRefGoogle Scholar
  4. Carpaneto, A., Cantu, A.M., and Gambale, F., Redox Agents Regulate Ion Channel Activity in Vacuoles from Higher Plant Cells, FEBS Lett., 1999, vol. 442, pp. 129–132.PubMedCrossRefGoogle Scholar
  5. Dobrovinskaya, O.R., Muniz, J., and Pottosin, I.I., Inhibition of Vacuolar Ion Channels by Polyamines, J. Membr. Biol., 1999, vol. 167, pp. 127–140.PubMedCrossRefGoogle Scholar
  6. Dschida, W. and Bowman, B.J., The Vacuolar ATPase: Sulfite Stabilization and the Mechanism of Nitrate Inactivation, J. Biol. Chem., 1995, vol. 270, pp. 1557–1663.PubMedCrossRefGoogle Scholar
  7. Feng, Y. and Forgac, M., Inhibition of Vacuolar H+-ATPase by Disulfide Bond Formation between Cysteine 254 and Cysteine 532 in Subunit A, J. Biol. Chem., 1994, vol. 269, no. 18, pp. 13224–13230.PubMedGoogle Scholar
  8. Korzun, A.M., Nurminskii, V.N., Rozinov, S.V., and Salyaev, R.K., Effect of Dimethyl Sulfoxide (DMSO) on the Membrane Conductivity of an Isolated Vacuole, Dokl. Akad. Nauk, 2001, vol. 381, no. 5, pp. 691–693 [Dokl. (Engl. Transl.), vol. 381, no. 5, pp. 409–411].Google Scholar
  9. Korzun, A.M., Rozinov, S.V., and Abashin, G.I., An Operational Amplifier B1404UD1A-1 in the Patch-Clamp Currentto-Voltage Converter, Biol. Membr., 1997, vol. 14, no. 2, pp. 219–223.Google Scholar
  10. Maeshima, M., Tonoplast Transporters: Organization and Function, Ann. Rev. Plant Physiol. Plant Mol. Biol., 2001, vol. 52, pp. 469–497.CrossRefGoogle Scholar
  11. Maeshima, M., Vacuolar H+-Pyrophosphatase, Biochim. Biophys. Acta, 2000, vol. 1465, pp. 37–51.PubMedCrossRefGoogle Scholar
  12. Mel’nikova, N.B. and Ioffe, I.K, Biocompatibility of Dihydroquercetin with Lipophilic and Hydrophilic Biomembrane Fragments: Effect of Metal Ions and Ascorbic Acid, Khim. Rast. Syr’ya, 2002, no. 2, pp. 93–103.Google Scholar
  13. Nikulina, G.N., “Obzor metodov kolorimetricheskogo opredeleniya fosfora po obrazovaniyu “molibdenovoi sini” (Survey of Methods of Colorimetric Determination of Phosphorus by the Formation of Molybdenum Blue), Moscow: Nauka, 1965.Google Scholar
  14. Pradedova, E.V., Sapega, Yu.G., Zheleznykh, A.O., et al., Effect of Redox Agents on the Activity of Proton Pumps from Common Beet Root Tonoplast, Biol. Membr., 2006, vol. 23, no. 4, pp. 296–301.CrossRefGoogle Scholar
  15. Reilly, C.A. and Aust, S.D., Measurement of Lipid Peroxidation, in Current Protocols in Toxicology, Maines, M.D., Costa, L.G., Reed, D.J., et al., Eds., New York: Wiley, 1999.Google Scholar
  16. Salyaev, R.K., Kuzevanov, V.Ya., Khaptagaev, S.B., and Kopytchuk, V.N., Isolation and Purification of Vacuoles and Vacuolar Membranes from Plant Cells, Fiziol. Rast., 1981, vol. 28, no. 6, pp. 1295–1305.Google Scholar
  17. Tavakoli, N., Kluge, C., Golldack, D., et al., Reversible Redox Control of Plant Vacuolar H+-ATPase Activity Is Related to Disulfide Bridge Formation in Subunit E as well as Subunit A, Plant J., 2001, vol. 28, pp. 51–59.PubMedCrossRefGoogle Scholar
  18. Teselkin, Yu.O., Zhambalova, B.A., Babenkova, I.V., et al., Antioxidant Properties of Dihydroquercetin, Biofizika, 1996, vol. 41, no. 3, pp. 620–624.PubMedGoogle Scholar
  19. Vladimirov, Yu.A. and Archakov, A.P., Perekisnoe okislenie v biologicheskikh membranakh (Peroxidative Reactions in Biological Membranes), Moscow: Nauka, 1972.Google Scholar
  20. Ward, J.M., Patch-Clamping and Other Molecular Approaches for the Study of Plasma Membrane Transporters Demystified, Plant Physiol., 1997, vol. 114, no. 4, pp. 1151–1159.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • V. N. Nurminsky
    • 1
  • N. V. Ozolina
    • 1
  • J. G. Sapega
    • 1
  • A. O. Zheleznykh
    • 1
  • E. V. Pradedova
    • 1
  • A. M. Korzun
    • 1
  • R. K. Salyaev
    • 1
  1. 1.Siberian Institute of Plant Physiology and Biochemistry, Siberian BranchRussian Academy of SciencesIrkutskRussia

Personalised recommendations