Biology Bulletin

, Volume 35, Issue 1, pp 1–11

On the origin of avian flight: Compromise and system approaches

Theoretical Biology

Abstract

Based on evolutionary morphological analysis of the fore and hind limbs of extinct and extant birds, a new compromise hypothesis of the origin of flight in birds and theropod dinosaurs is proposed. The bipedalism and anisodactylous foot suitable for various functions were key adaptations for the development of flight. The bipedalism freed forelimbs from the supporting function and promoted transformation into wings, as animals moved from one tree branch to another and descended from trees. At the initial stage, the strong hind limbs provided the opportunity to climb and leap onto trees, bushes, or eminence, while the anisodactylous foot provided a firm support on both dry land and trees. The support provided by this foot allowed the reduction of the tail, which was initially composed of a long row of vertebrae. Thus, a stage of gliding flight was not necessarily passed by early birds. In the other lineages of feathered creatures, functional changes in forelimbs that resulted in the formation of wings developed in parallel and followed almost the same scenario.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleksander, R., Biomekhanika (Biomechanics), Moscow: Mir, 1970.Google Scholar
  2. Bent, A.C., Life Histories of North American Gallinaceous Birds: Family Cracidae, Bull. US Nat. Mus., 1932, vol. 162, p. 345.Google Scholar
  3. Bock, W.J., The Role of Adaptive Mechanisms in the Evolution of Higher Levels of Organization, Syst. Zool., 1965, vol. 14, pp. 272–287.PubMedCrossRefGoogle Scholar
  4. Bock, W.J., The Arboreal Origin of Avian Flight, Mem. Calif. Acad. Sci., 1986, no. 8, pp. 57–72.Google Scholar
  5. Bogdanovich, I.A., The Apparatus of Terrestrial Locomotion in Tetraonidae and Other Galliformes: Morphoecological Characteristics, Vestn. Zool., 1997.Google Scholar
  6. Bogdanovich, I.A., Transformation of the Foot in Early Evolution of Birds, Vestn. Zool., 2000, vol. 34, nos. 4-5, pp. 123–127.Google Scholar
  7. Caple, G., Balda, R.P., and Wills, W.R., The Physics of Leaping Animals and the Evolution of Preflight, Am. Natur., 1983, vol. 121, no. 4, pp. 455–476.CrossRefGoogle Scholar
  8. Chatterjee, S., Cranial Anatomy and Relationships of a New Triassic Bird from Texas, Phil. Trans. R. Soc. London, Ser. B, 1991, vol. 332, no. 1265, pp. 277–346.CrossRefGoogle Scholar
  9. Chatterjee, S., The Triassic Bird Protoavis, Archaeopteryx, 1995, no. 13, pp. 15–31.Google Scholar
  10. Chatterjee, S., Protoavis and the Early Evolution of Birds, Palaeontographica, Abt. A, 1999, vol. 254, nos. 1–3, p. 100.Google Scholar
  11. Chatterjee, S. and Templin, R.J., Feathered Coelurosaurs from China: New Light on the Arboreal Origin of Avian Flight, in Feathered Dragons: Studies on the Transition from Dinosaurs to Birds, Currie, P.J., Koppelhus, E.B., Shugar, M.A., and Wright, I.L., Eds., Bloomingon: Indiana Univ. Press, 2004, pp. 251–281.Google Scholar
  12. Chiappe, L.M., The First 85 Million Years of Avian Evolution, Nature, 1995, vol. 378, pp. 349–355.CrossRefGoogle Scholar
  13. Chiappe, L.M., Early Avian Evolution: Roundtable Report, Smiths. Contrib. Paleobiol., 1999, no. 89, pp. 335–340.Google Scholar
  14. Christiansen, P. and Bonde, N., Body Plumage in Archaeopteryx: A Review and New Evidence from the Berlin Specimen, Comptes Rendus Palevol., 2004, vol. 3, pp. 99–118.CrossRefGoogle Scholar
  15. Coombs, W.P., Jr., Theoretical Aspects of Cursorial Adaptation in Dinosaurs, Q. Rev. Biol., 1978, vol. 53, no. 4, pp. 393–418.CrossRefGoogle Scholar
  16. Cowen, R. and Lipps, J.H., An Adaptive Scenario for the Origin of Birds and of Flight in Birds, in Third North American Paleontol. Conv., Proceedings, vol. 1, Quebec: Univ. Montreal, 1982, pp. 109–112.Google Scholar
  17. Czerkas S.A., Zhang, D., Li, J., and Li, Y., Flying Dromeosaurs, Dinosaur Mus. J., 2002, vol. 1, pp. 97–126.Google Scholar
  18. Dementiev, G.P., Ptitsy. Rukovodstvo po zoologii (Birds: Manual of Zoology), Moscow: Akad. Nauk SSSR, 1940, vol. 6.Google Scholar
  19. Dial, K.P., Evolution of Avian Locomotion: Correlates of Flight Style, Locomotor Modules, Nesting Biology, Body Size, Development, and the Origin of Flapping Flight, Auk, 2003a, vol. 120, pp. 941–952.CrossRefGoogle Scholar
  20. Dial, K.P., Wing-assisted Incline Running and the Evolution of Flight, Science, 2003b, vol. 299, pp. 402–404.PubMedCrossRefGoogle Scholar
  21. Feduccia, A., The Origin and Evolution of Birds New Haven: Yale Univ. Press, 1999.Google Scholar
  22. Feduccia, A., Birds Are Dinosaurs: Simple Answer to a Complex Problem, Auk, 2002, vol. 119, pp. 1187–1201.CrossRefGoogle Scholar
  23. Feduccia, A., Lingham-Soliar, T., and Hinchliffe, J.R., Do Feathered Dinosaurs Exist? Testing the Hypothesis on Neontological and Paleontological Evidence, J. Morphol., 2005, vol. 266, pp. 125–166.PubMedCrossRefGoogle Scholar
  24. Garner, J.P., Taylor, G.K., and Thomas, L.R., On the Origins of Birds: The Sequence of Characters Acquisition in the Evolution of Avian Flight, Proc. R. Soc. London, Ser. B, 1999, vol. 266, pp. 1259–1266.CrossRefGoogle Scholar
  25. Gatesy, S.M., Caudofemoral Musculature and the Evolution of Theropod Locomotion, Paleobiology, 1990, vol. 16, pp. 170–186.Google Scholar
  26. Gatesy, S.M., Guineafowl Hind Limb Function: 2. Electromyographic Analysis and Motor Pattern Evolution, J. Morphol., 1999, vol. 240, pp. 127–142.CrossRefGoogle Scholar
  27. Gatesy, S.M. and Dial, K.P., From Frond to Fan: Archaeopteryx and the Evolution of Short-Tailed Birds, Evolution, 1996, vol. 50, pp. 2037–2048.CrossRefGoogle Scholar
  28. Golonka, J., Cambrian-Neogene Plate Tectonic Maps, Krakow: Wydawnictwo Uniw. Jagiellonskiego, 2000.Google Scholar
  29. Heilmann, G., The Origin of Birds, London: Witherby, 1926.Google Scholar
  30. Homberger, D.G., Avian Origin Revisited, J. Bioscience, 2003, vol. 28, pp. 135–141.CrossRefGoogle Scholar
  31. Hou, L., A Carinate Bird from the Upper Jurassic of Western Liaoning, China, Chin. Sci. Bul., 1997, vol. 42, pp. 413–416.CrossRefGoogle Scholar
  32. Hutchinson, J.R., The Evolution of Pelvic Osteology and Soft Tissues on the Line to Extant Birds (Neornithes), Zool. J. Linn. Soc., 2001, vol. 131, pp. 123–168.CrossRefGoogle Scholar
  33. Hutchinson, J.R. and Gatesy, S.M., Adductors, Abductors and the Evolution of Archosaur Locomotion, Paleobiology, 2000, vol. 26, pp. 734–751.CrossRefGoogle Scholar
  34. Irisov, E.A., A New Hypothesis of the Origin of Birds, Rus. Ornitol. Zh., 1992, vol. 1, no. 1, pp. 51–56.Google Scholar
  35. Ji, Q., Currie, P.J., Norell, M.A., and Ji, S., Two Feathered Dinosaurs from North-Eastern China, Nature, 1998, vol. 393, pp. 753–761.CrossRefGoogle Scholar
  36. Ji, Q., Norell, M.A., Gao, K., et al., The Distribution of Integumentary Structures in a Feathered Dinosaur, Nature, 2001, vol. 410, pp. 1084–1088.PubMedCrossRefGoogle Scholar
  37. Kovtun, M.F., Stroenie i evolyutsiya organov lokomotsii rukokrylykh (The Structure and Evolution of Locomotor Organs of Bats), Kiev: Naukova Dumka, 1984.Google Scholar
  38. Kovtun, M.F., Shatkovs’ka, O.V., and Shatkovs’kii, Yu.V., Establishment of the Nestling Types of Avian Development, Vestn. Zool., 2003, vol. 37, no. 2, pp. 51–59.Google Scholar
  39. Kurochkin, E.N., Adaptive Structural Features and Locomotion of Waterfowl, in Itogi nauki. Zoologiya pozvonochnykh. Problemy ornitologii, 1970 (Achievements of Scientific Studies: Vertebrate Zoology: Problems of Ornithology), Moscow: VINITI, 1971, pp. 94–135.Google Scholar
  40. Kurochkin, E.N., A New Avian Order from the Lower Cretaceous of Mongolia, Dokl. Akad. Nauk SSSR, 1982, vol. 262, no. 2, pp. 452–455.Google Scholar
  41. Kurochkin, E.N., Synopsis of Mesozoic Birds and Early Evolution of Class Aves, Archaeopteryx, 1995, no. 13, pp. 47–66.Google Scholar
  42. Kurochkin, E.N., A New Enantiornithine of the Mongolian Late Cretaceous, and a General Appraisal of the Infraclass Enantiornithes (Aves) Moscow: Paleontol. Inst., 1996.Google Scholar
  43. Kurochkin, E.N., The Relationships of the Early Cretaceous Ambiortus and Otogornis (Aves: Ambiortiformes), Smiths. Contribs Paleobiol., 1999, no. 89, pp. 275–284.Google Scholar
  44. Kurochkin, E.N., New Ideas about the Origin and Early Evolution of Birds, in Dostizheniya i problemy ornitologii Severnoi Evrazii na rubezhe vekov, (Achievements and Problems of Ornithology of Northern Eurasia on the Eve of A New Century), Kurochkin, E.N. and Rakhimov, I.I., Eds., Kazan: MAGARIF, 2001, pp. 68–96.Google Scholar
  45. Kurochkin, E.N., Four-Winged Dinosaur and the Origin of Birds, Priroda (Moscow, Russ. Fed.), 2004, no. 5, pp. 3–12.Google Scholar
  46. Kurochkin, E.N., Basal Diversification of Feathered Creatures, in Evolyutsiya biosfery i bioraznoobraziya, (Evolution of the Biosphere and Biodiversity) Rozhnov, S.V., Ed., Moscow: KMK, 2006a, pp. 219–232.Google Scholar
  47. Kurochkin, E.N., Parallel Evolution of Theropod Dinosaurs and Birds, Zool. Zh., 2006b, vol. 85, no. 3, pp. 283–297.Google Scholar
  48. Lacasa-Ruiz, A., Hypothetical Beginnings of Feathers in Continental Aquatic Palaeoenvironments, Terra Nova, 1993, vol. 5, pp. 612–615.CrossRefGoogle Scholar
  49. Long Ch.A., Zhang, G.P., George, T.F., and Long, C.F., Physical Theory, Origin of Flight, and Synthesis Proposed for Birds, J. Theor. Biol., 2003, vol. 224, pp. 9–26.PubMedCrossRefGoogle Scholar
  50. Longrich, N., Structure and Function of Hindlimb Feathers in Archaeopteryx lithographica, Paleobiology, 2006, vol. 32, pp. 417–431.Google Scholar
  51. Loparev, S.A., Probable Adaptive Significance of the Open Pelvis of Birds and New Hypothesis of the origin of Flight, Berkut, 1996, vol. 5, no. 2, pp. 216–230.Google Scholar
  52. Marsh, O.C., Introduction and Succession of Vertebrate Life in America, Proc. Am. Assoc. Adv. Sci., 1877, pp. 211–258.Google Scholar
  53. Martin, L.D., The Origin of Birds and of Avian Flight, Current Ornithology, vol. 1, New York-London: Plenum, 1983, pp. 105–129.Google Scholar
  54. Martin, L.D., A Basal Archosaurian Origin of Birds, Acta Zool. Sin., 2004, vol. 50, pp. 978–990.Google Scholar
  55. Mayr, G., Pohl, B., Hartman, S., and Peters, D.S., The Tenth Skeletal Specimen of Archaeopteryx, Zool. J. Linn. Soc. London, 2007, vol. 149, pp. 97–116.CrossRefGoogle Scholar
  56. Mayr, G., Pohl, B., and Peters, D.S., A Well Preserved Archaeopteryx Specimen with Theropod Features, Science, 2005, vol. 310, pp. 1483–1486.PubMedCrossRefGoogle Scholar
  57. Melchor, R.N., Valis, S., and Genise, J.F., Bird-like Fossil Footprints from the Late Triassic, Nature, 2002, vol. 417, pp. 936–938.PubMedCrossRefGoogle Scholar
  58. Müller, G.B. and Streicher, J., Ontogeny of the Syndesmosis Tibiofibularis and the Evolution of the Bird Hind Limb: A Caenogenetic Feature Triggers Phenotypic Novelty, Anat. Embryol., 1989, vol. 179, pp. 327–339.PubMedCrossRefGoogle Scholar
  59. Nesov, L.A. and Yarkov, A.A., New Birds from the Cretaceous-Paleogene of the Soviet Union and Some Remarks on the Origin and Evolution of the Class Aves, Tr. Zool. Inst. Akad. Nauk SSSR, 1989, vol. 197, pp. 78–97.Google Scholar
  60. Nopsca, F., Ideas on the Origin of Flight, Proc. Zool. Soc. London, 1907, vol. 15, pp. 223–226.Google Scholar
  61. Norell, M. and Makovicky, P.J., Important Features of the Dromeosaur Skeleton: Information from a New Specimen, Am. Mus. Novit., 1997, no. 3215, pp. 1–28.Google Scholar
  62. Ostrom, J.H., Archaeopteryx and the Origin of Birds, Biol. J. Linn. Soc., 1976, vol. 8, pp. 91–182.CrossRefGoogle Scholar
  63. Ostrom, J.H., Bird Flight: How Did It Begin?, Am. Sci., 1979, vol. 67, pp. 46–56.PubMedGoogle Scholar
  64. Ostrom, J.H., How Bird Flight Might Have Come about, in Dinofest International: Proc. Symp. Sponsored by Arizona St. Univ., 1996. Phoenix, Wolberg, D.L., Stump, E., and Rosenberg, G.D., Eds., Philadelphia: Acad. Nat. Sci, 1997, pp. 301–310.Google Scholar
  65. Ostrom, J.H., Poore, S.O., and Goslow, G.E., Humeral Rotation and Wrist Supination: Important Functional Complex for the Evolution of Powered Flight in Birds?, Smiths. Contribs Paleobiol., 1999, no. 89, pp. 301–309.Google Scholar
  66. Padian, K., A Functional Analysis of Flying and Walking in Pterosaurs, Paleobiology, 1983, vol. 9, pp. 218–239.Google Scholar
  67. Padian, K. and Chiappe, L.M., The Origin of Birds and Their Flight, Sci. Am., 1998a, vol. 278, pp. 28–37.CrossRefGoogle Scholar
  68. Padian, K. and Chiappe, L.M., The Origin and Early Evolution of Birds, Biol. Rev. Cambridge Phil. Soc., 1998b, vol. 73, pp. 1–42.CrossRefGoogle Scholar
  69. Padian, K., Hutchinson, J.R., and Holtz, T.R., Jr., Phylogenetic Definitions and Nomenclature of the Major Taxonomic Categories of the Carnivorous Dinosauria (Theropoda), J. Vertebr. Paleontol., 1999, vol. 19, pp. 69–80.CrossRefGoogle Scholar
  70. Paul, G.S., Predatory Dinosaurs of the World, New York: Simon Schuster, 1988.Google Scholar
  71. Paul, G.S., Dinosaurs of the Air: The Evolution and Loss of Flight in Dinosaurs and Birds, Baltimore-London: Johns Hopkins Univ. Press, 2002.Google Scholar
  72. Peters, D.S., Anagenesis of Early Birds Reconsidered, Senckenb. Lethaea, 2002, vol. 82, pp. 347–354.CrossRefGoogle Scholar
  73. Potapov, R.L., Otryad Kuroobraznye (Galliformes): (Order Galliformes) Part 2. Semeistvo Teterevinye (Tetraonidae), Leningrad: Nauka, 1985.Google Scholar
  74. Prum, R.O., Why Ornithologists Should Care About the Theropod Origin of Birds, Auk, 2002, vol. 119, pp. 1–17.CrossRefGoogle Scholar
  75. Prum, R.O., Are Current Critiques of the Theropod Origin of Birds Science? Rebutal to Feduccia (2002), Auk, 2003, vol. 120, pp. 550–561.CrossRefGoogle Scholar
  76. Renesto, S., Megalancosaurus, a Possibly Arboreal Archosauromorph (Reptilia) from the Upper Triassic of Northern Italy, J. Vertebr. Paleontol., 1994, vol. 14, pp. 38–52.CrossRefGoogle Scholar
  77. Romer, A.S., The Ilium in Dinosaurs and Birds, Bull. Am. Mus. Natur. Hist., 1923, vol. 48, pp. 141–145.Google Scholar
  78. Romer, A.S. and Parsons, T.S., The Vertebrate Body, 6th ed. Philadelphia: Saunders College. Publ., 1986.Google Scholar
  79. Sanz, J.C. and Buscalioni, A.D., A New Bird from the Early Cretaceous of Las Hoyas, Spain, and the Early Radiation of Birds, Palaeontology, 1992, vol. 35, pp. 829–845.Google Scholar
  80. Sanz, J.L. and Bonaparte, J.F., A New Order of Birds (Class Aves) from the Lower Cretaceous of Spain, Nat. Hist. Mus. Los Angeles Co., Sci. Ser., 1992, no. 36, pp. 40–49.Google Scholar
  81. Savel’ev, S.A., Proiskhozhdenie mozga (The Origin of Brain), Moscow: VEDI, 2005.Google Scholar
  82. Schmidt-Nielsen, K., Razmery zhivotnykh: pochemu oni tak vazhny? (Sizes of Animals: Why They Are So Important), Moscow: Mir, 1987.Google Scholar
  83. Senter, P., Scapular Orientation in Theropods and Basal Birds, and the Origin of Flapping Flight, Acta Palaeontol. Polon., 2006, vol. 51, pp. 305–313.Google Scholar
  84. Sereno, P.C., Iberomesornis romerali (Avese, Ornithothoraces) Reevaluates As an Early Cretaceous Enantiornithine, Neues Jahrb. Geol. Palaeontol., 2000, vol. 215, pp. 365–395.Google Scholar
  85. Sereno, P.C., Rao, C., and Li, J., Sinornis santensis (Aves: Enantiornithes) from the Early Cretaceous of Northeastern China, in Mesozoic Birds: Above the Heads of Dinosaurs, Chiappe, L.M. and Witmer, L.M., Eds., Berkeley: Univ. California Press, 2002, pp. 184–208.Google Scholar
  86. Shipman, P., Taking Wing: Archaeopteryx and the Evolution of Bird Flight, London: Weidenfeld Nicolson, 1998, p. 336.Google Scholar
  87. Shishkin, M.A., About Sergei Viktorovich Meyen: Fragments of Memory and Reflection about Evolution, in Pamyati Sergeya Viktorovicha Meiena (K 70-letiyu so dnya rozhdeniya), (In Memory of Sergei Viktorovich Meyen (70th Anniversary of the Birthday,) Akhmet’ev, M.A. and German, A.B., Eds., Moscow: GEOS, 2005, pp. 34–45.Google Scholar
  88. Shishkin, M.A., Ontogeny and Lessons of Evolutionism, Ontogenez, 2006, vol. 37, no. 3, pp. 179–198.PubMedGoogle Scholar
  89. Stolpe, M., Physiologish-anatomische Untersuchungen über die hintere Extremitat der Vögel, J. Ornithol., 1932, vol. 80, pp. 161–247.CrossRefGoogle Scholar
  90. Sych, V.F., Morfologiya letatel’nogo apparata teterevinykh i fazanovykh ptits (Morphology of the Flying Apparatus of Tetraonidae and Phasianidae), Kiev: Naukova Dumka, 1985.Google Scholar
  91. Sych, V.F., Moroz, V.F., and Bogdanovich, I.A., On Experimental Study of Bipedal Locomotion of Birds, Vestn. Zool., 1985, no. 3, pp. 79–81.Google Scholar
  92. Takhtajian, A.L., Vysshie rasteniya (Higher Plants), Moscow: Akad. Nauk SSSR, vol. 1, 1956.Google Scholar
  93. Tarsitano, S. and Hecht, M.K., A Reconsideration of the Reptilian Relationships of Archaeopteryx, Zool. J. Linn. Soc., 1980, vol. 69, pp. 149–182.CrossRefGoogle Scholar
  94. Thulborn, R.A., The Postcranial Skeleton of the Triassic Ornithischian Dinosaur Fabrosaurus australis, Palaeontology, 1972, vol. 15, pp. 29–60.Google Scholar
  95. Walker, A.D., Evolution of the Pelvis in Birds and Dinosaurs, in Problems in Vertebrate Evolution: Linnean Soc. Symp. Ser. 4, Andrews, S.M., Miles, R.S., and Walker, A.D., Eds., London: Academic, 1977, pp. 319–358.Google Scholar
  96. Williston, S.W., Are Birds Derived from Dinosaurs?, Kansas City: Rev. Sci., 1879, pp. 457–460.Google Scholar
  97. Witmer, L.M., The Debate on Avian Ancestry, in Mesozoic Birds: Above the Heads of Dinosaurs, Chiappe, L.M. and Witmer, L.M., Eds., Berkeley: Univ. California Press, 2002, pp. 3–29.Google Scholar
  98. Xu, X. and Zhang, F., A New Maniraptoran Dinosaur from China with Long Feathers on the Metatarsus, Naturwissenschaften, 2005, vol. 92, pp. 173–177.PubMedCrossRefGoogle Scholar
  99. Xu, X., Zhou, Z., Wang, X., et al., Fourwinged Dinosaurs from China, Nature, 2003, vol. 421, pp. 335–340.PubMedCrossRefGoogle Scholar
  100. Yakobi, V.E., Mechanization and Automatics of the Wing of Birds, in Mekhanizmy poleta i orientatsii ptits (Mechanisms of Flight and Orientation of Birds), Kleinenberg S.E., Ed., Moscow: Nauka, 1966, pp. 27–50.Google Scholar
  101. Yasamanov, N.A., Populyarnaya paleogeografiya (Popular Scientific Paleogeography), Moscow: Nedra, 1985.Google Scholar
  102. You, H., Lamanna, M.C., Harris, J.D., et al., A Nearly Modern Amphibious Bird from the Early Cretaceous of Northwestern China, Science, 2006, vol. 312, pp. 1640–1643.PubMedCrossRefGoogle Scholar
  103. Zhang, F., Ericson, P.G.P., and Zhou, Z., Description of a New Enantiornithine Bird from the Early Cretaceous of Hebei, Northern China, Can. J. Earth Sci., 2004, vol. 41, pp. 1097–1107.CrossRefGoogle Scholar
  104. Zhang, F. and Zhou, Z., A Primitive Enantiornithine Bird and the Origin of Feathers, Science, 2000, vol. 290, pp. 1955–1959.PubMedCrossRefGoogle Scholar
  105. Zhang, F. and Zhou, Z., Leg Feathers in an Early Cretaceous Bird, Nature, 2004, vol. 431, p. 925.PubMedCrossRefGoogle Scholar
  106. Zhang, Z., Hou, L., Hasegawa, Y., et al., The First Mesozoic Heterodactyl Bird from China, Acta Geol. Sin., 2006, vol. 80, pp. 631–635.Google Scholar
  107. Zhou, Z., The Discovery of Early Cretaceous Birds in China, Cour. Forschung. Senckenberg, 1995, vol. T. 181, pp. 9–22.Google Scholar
  108. Zhou, Z., The Origin and Early Evolution of Birds: Discoveries, Disputes, and Perspectives from Fossil Evidence, Naturwissenschaften, 2004, vol. 91, pp. 455–471.PubMedCrossRefGoogle Scholar
  109. Zhou, Z., Chiappe, L.M., and Zhang, F., Anatomy of Early Cretaceous Bird Eoenantiornis buhleri (Aves: Enantiornithes) from China, Can. J. Earth Sci., 2005, vol. 42, pp. 1331–1338.CrossRefGoogle Scholar
  110. Zhou, Z. and Farlow, J.O., Flight Capability and Habits of Confuciusornis, in New Perspectives on the Origin and Early Evolution of Birds, Gauthier, J. and Gall, L.F., Eds., New Haven: Yale Univ. Press, 2001, pp. 237–254.Google Scholar
  111. Zhou, Z. and Zhang, F., Two New Ornithurine Birds from the Early Cretaceous of Western Liaoning, China, Chin. Sci. Bull., 2001, vol. 46, pp. 1258–1264.CrossRefGoogle Scholar
  112. Zhou, Z. and Zhang, F., Discovery of an Ornithurine Bird and Its Implication for Early Cretaceous Avian Radiation, Proc. Nat. Acad. Sci. USA, 2005, vol. 102, pp. 18999–19002.Google Scholar
  113. Zhou, Z. and Zhang, F., A Beaked Basal Ornithurine Bird (Aves, Ornithurae) from Lower Cretaceous of China, Zool. Scripta, 2006a, vol. 35, pp. 363–373.CrossRefGoogle Scholar
  114. Zhou, Z. and Zhang, F., Mesozoic Birds of China—A Synoptic Review, Vertebr. Palasiat., 2006b, vol. 44, pp. 74–98.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.Paleontological InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Institute of ZoologyNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations