Journal of Analytical Chemistry

, Volume 74, Issue 11, pp 1140–1147 | Cite as

Flow Methods of Analysis as a New Approach to the Implementation of Chemical Analytical and Radiochemical Control in Nuclear Power Engineering

  • L. N. MoskvinEmail author
  • I. V. Miroshnichenko


General approaches to the automation of chemical analysis and radiochemical control in nuclear power engineering are discussed. For radioactive media with the highest specific activity, the necessity of the automation of the off-line control mode for minimizing the amount of the formed radioactive wastes is proved. Possibilities of the automation of the off-line analysis of primary coolants of nuclear power installations in the determination of chloride and sulfate ions are considered as an illustration. Based on a comparison with the results of analysis by ion chromatography, it is shown that the developed methods possess comparable analytical characteristics. A procedure for the determination of uranium using principles of cyclic injection analysis ensuring lower limits of detection in comparison with radiometric procedures is presented to illustrate possibilities of radiochemical analysis. The thesis about the advisability of transition to flow methods of analysis instead of batch methods used nowadays is substantiated.


automation flow methods of analysis flow-injection and cyclic injection analysis off-line and on-line analysis 



  1. 1.
    Armenta, S. and Gariguas, M., TrAC, Trends Anal. Chem., 2008, vol. 27, no. 6, p. 497.CrossRefGoogle Scholar
  2. 2.
    Problemy analiticheskoi khimii (Problems of Analytical Chemistry), vol. 17: Protochnyi khimicheskii analiz (Flow-Through Chemical Analysis), Zolotov, Yu.A., Ed., Moscow: Nauka, 2014.Google Scholar
  3. 3.
    Shpigun, L.K. and Zolotov, Yu.A., Protochno-inzhektsionnyi analiz (Flow Injection Analysis), Moscow: Znanie, 2004.Google Scholar
  4. 4.
    Vakh, C., Falkova, M., Timofeeva, I., Moskvin, A., Moskvin, L., and Bulatov, A., Crit. Rev. Anal. Chem., 2016, vol. 46, no. 5, p. 374. CrossRefPubMedGoogle Scholar
  5. 5.
    Ruzicka, J. and Hansen, E.H., Anal. Chim. Acta, 1975, vol. 78, p. 145.CrossRefGoogle Scholar
  6. 6.
    Ruzicka, J. and Hansen, E.H., Anal. Chim. Acta, 1986, vol. 179, p. 1.CrossRefGoogle Scholar
  7. 7.
    Ruzicka, J. and Hansen, E.H., Flow Injection Analysis, Ser. Chemical Analysis, vol. 62, New York: Wiley, 1988.Google Scholar
  8. 8.
    Kuznetsov, V.V., Sorovskii Obrazovat. Zh., 2010, vol. 11, p. 56.Google Scholar
  9. 9.
    Ruzicka, J., Fresenius’ Z. Anal. Chem., 1988, vol. 329, no. 6, p. 653.CrossRefGoogle Scholar
  10. 10.
    Moskvin, L.N. and Moskvin, A.L., Russ. Chem. Rev., 2005, vol. 74, no. 2, p. 145.CrossRefGoogle Scholar
  11. 11.
    Ruzicka, J. and Marshall, G.D., Anal. Chim. Acta, 1990, vol. 237, p. 329.CrossRefGoogle Scholar
  12. 12.
    Marshall, G., Wolcott, D., and Olson, D., Anal. Chim. Acta, 2003, vol. 499, p. 29.CrossRefGoogle Scholar
  13. 13.
    Gonçalves Dias Diniz, P.H., Farias de Almeida, L., Harding, D.P., and Ugulino de Araújo, M.C., TrAC, Trends Anal. Chem., 2012, vol. 35, p. 39.CrossRefGoogle Scholar
  14. 14.
    Mozzhukhin, A.V., Moskvin, A.L., and Moskvin, L.N., J. Anal. Chem., 2007, vol. 62, no. 5, p. 475.CrossRefGoogle Scholar
  15. 15.
    Falkova, M.T., Pushina, M.O., Bulatov, A.V., Alekseeva, G.M., and Moskvin, L.N., Anal. Lett., 2014, vol. 47, p. 970.CrossRefGoogle Scholar
  16. 16.
    D’yakov, A.A., Men’kin, L.I., and Karpenko, S.G., At. Energ., 1986, vol. 61, no. 5, p. 334.Google Scholar
  17. 17.
    Epimakhov, V.N. and Glushkov, S.V., Radiokhimiya, 1994, vol. 36, no. 6, p. 514.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Aleksandrov Research Institute of TechnologySosnovyi BorRussia

Personalised recommendations