Advertisement

Journal of Analytical Chemistry

, Volume 74, Issue 11, pp 1104–1112 | Cite as

Analysis of Silver and Gold Samples from the Borodino Treasure by Inductively Coupled Plasma Mass Spectrometry and Inductively Coupled Plasma Atomic Emission Spectrometry

  • V. K. KarandashevEmail author
  • N. I. Shishlina
  • V. A. Khvostikov
  • A. S. Kolchina
  • Zh. P. Burmii
  • A. Yu. Loboda
ARTICLES
  • 20 Downloads

Abstract

One of the main requirements for the methods of elemental analysis of unique archaeological samples is to minimize the damage they cause. Two new procedures for analyzing silver and gold samples, weighing several milligrams, obtained by drilling from the inner surface of silver and gold artifacts of the Borodino treasure, stored in the State Historical Museum, are described. The procedures are based on the autoclave decomposition of samples and subsequent analysis of the obtained solutions by inductively coupled plasma mass spectrometry(ICP–MS) and inductively coupled plasma atomic emission spectrometry (ICP–AES). They enable the determination of more than 60 impurity elements in each sample with a determination limits from 1 × 10–2 to n × 10–3 wt % for common elements (Na, Mg, Al, K, Ca, Ti, and Fe) and to n × 10–7 wt % for REEs, Ir, Tl, and U. The correctness of the developed procedures is confirmed by the analysis of standard samples and by comparison with the ICP–MS results obtained with laser sampling, which allows direct analysis of samples without their dissolution.

Keywords:

silver and gold of the Borodino treasure inductively coupled plasma mass spectrometry inductively coupled plasma atomic emission spectrometry autoclave decomposition of samples 

Notes

FUNDING

This work was performed as part of the State Assignment no. 075-00475-19-00 and supported by the Russian Science Foundation, project no. 17-18-01399.

REFERENCES

  1. 1.
    Longerich, H.P., Fryer, B.J., and Strong, D.F., Spectrochim. Acta, Part B, 1987, vol. 42, nos. 1–2, p. 101.CrossRefGoogle Scholar
  2. 2.
    Kogan, V.V., Hinds, M.W., and Ramendik, G.I., Spectrochim. Acta, Part B, 1994, vol. 49, no. 4, p. 333.CrossRefGoogle Scholar
  3. 3.
    Devos, W., Moor, C., and Lienemann, P., J. Anal. At. Spectrom., 1999, vol. 14, no. 4, p. 621.CrossRefGoogle Scholar
  4. 4.
    Sarah, G., Gratuze, B., and Barrandon, J.-N., J. Anal. At. Spectrom., 2007, vol. 22, no. 9, p. 1163.CrossRefGoogle Scholar
  5. 5.
    Schlosser, S., Reinecke, A., Schwab, R., Pernicka, E., Sonetra, S., and Laychour, V., J. Archaeol. Sci., 2012, vol. 39, no. 9, p. 2877.CrossRefGoogle Scholar
  6. 6.
    Gentelli, L., J. Archaeol. Sci.: Rep., 2016, vol. 9, p. 536.Google Scholar
  7. 7.
    Watling, R.J., Herbert, H.K., Delev, D., and Abell, I.D., Spectrochim. Acta, Part B, 1994, vol. 49, no. 2, p. 205.CrossRefGoogle Scholar
  8. 8.
    Dussubieux, L. and Van Zelst, L., Appl. Phys. A, 2004, vol. 79, no. 2, p. 353.CrossRefGoogle Scholar
  9. 9.
    Kovacs, R., Schlosser, S., Staub, S.P., Schmiderer, A., Pernicka, E., and Gunther, D., J. Anal. At. Spectrom., 2009, vol. 24, no. 4, p. 476.CrossRefGoogle Scholar
  10. 10.
    Nocete, F., Sáez, R., Bayona, M.R., Nieto, J.M., Peramo, A., López, P., Gil-Ibarguchi, J.I., Inácio, N., García, S., and Rodríguez, J., J. Archaeol. Sci., 2014, vol. 41, p. 691.CrossRefGoogle Scholar
  11. 11.
    Brostoff, L.B., Gonzalez, J.J., Jett, P., and Russo, R.E., J. Archaeol. Sci., 2009, vol. 36, p. 461.CrossRefGoogle Scholar
  12. 12.
    GOST (State Standard) 28353.2-89: Silver. Method of Atomic-Emission Analysis with Inductive Plasma, Moscow: Izd. Standartov, 1990.Google Scholar
  13. 13.
    GOST (State Standard) 27973.2-88: Gold. Method of Atomic-Emission Analysis with Inductive Plasma, Moscow: Izd. Standartov, 1989.Google Scholar
  14. 14.
    GOST (State Standard) R 53372-2009. Gold. Methods of Analysis, Moscow: Standartinform, 2009.Google Scholar
  15. 15.
    Zhitenko, L.P., Taldonov, Yu.V., Pakhomova, S.B., Knyaz’kin, G.S., and Ozerova, L.E., Inorg. Mater., 2015, vol. 51, no. 14, p. 1404.CrossRefGoogle Scholar
  16. 16.
    Sun, Y.C., Mierzwa, J., Lin, C.F., Yeh, T.I., and Yang, M.H., Analyst, 1997, vol. 122, no. 5, p. 437.CrossRefGoogle Scholar
  17. 17.
    Zaikov, V.V., Filippova, K.A., Udachin, V.N., Zaikova, E.V., Rassomakhin, M.A., and Krainev, Yu.D., Mineralogiya, 2016, no. 2, p. 82.Google Scholar
  18. 18.
    Karandashev, V.K., Leikin, A.Yu., Khvostikov, V.A., Kutseva, N.K., and Pirogova, S.V., Inorg. Mater., 2016, vol. 52, no. 14, p. 1391.CrossRefGoogle Scholar
  19. 19.
    Khommel’, P., Brai, P., Khvostikov, V.A., Karandashev, V.K., Loboda, A.Yu., Kolchina, A.S., and Shishlina, N.I., in Borodinskii klad geroicheskoi epokhi bronzovogo veka. Estestvenno-nauchnyi i istoricheskii kontekst (Borodino Treasure of the Heroic Era of the Bronze Age: Natural-Scientific and Historical Context), Shishlin, N.I., Ed., Moscow: Gos. Istorich. Musei, 2019, p. 74.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. K. Karandashev
    • 1
    Email author
  • N. I. Shishlina
    • 2
  • V. A. Khvostikov
    • 1
  • A. S. Kolchina
    • 1
  • Zh. P. Burmii
    • 1
  • A. Yu. Loboda
    • 3
  1. 1.Institute of Microelectronics Technology Problems and High-Purity Materials, Russian Academy of SciencesChernogolovkaRussia
  2. 2.State Historical MuseumMoscowRussia
  3. 3.National Research Centre “Kurchatov Institute”MoscowRussia

Personalised recommendations