Journal of Analytical Chemistry

, Volume 74, Supplement 2, pp S1–S8 | Cite as

Synthesis and Use of Thin Polymer Films with Molecular Imprints of Salbutamol in Quartz Crystal Microbalance Sensors

  • T. N. ErmolayevaEmail author
  • O. V. FarafonovaEmail author
  • O. I. Bessonov


Thin-film coatings of quartz crystal microbalance sensors with molecularly imprinted salbutamol are synthesized by photopolymerization using methacrylic acid and ethylene glycol dimethacrylate as functional and cross-monomers. The effects of the concentration of salbutamol and functional and cross-monomers in the prepolymerization mixture on the concentration of surface molecular imprints and the stability of the polymer layer with molecular imprints are shown. The conditions of the synthesis of polymer layers directly on the surface of the sensor electrode are optimized. Analytical characteristics of the sensor for the determination of salbutamol in aqueous solutions are calculated.


piezoelectric quartz sensor molecularly imprinted polymers salbutamol photopolymerization 



This work was supported by the Russian Foundation for Basic Research, project no. 13-03-97505-r_tsentr_a) “Selectivity and Efficiency of the Molecular Recognition and Determination of Hormones and Beta-agonists by a Piezoelectric Quartz Immune and Biomimetic Sensor.”


  1. 1.
    Molecular Imprinting of Polymers, Piletsky, S. and Turner, A., Eds., Georgetown, TX: Landes Bioscience, 2006.Google Scholar
  2. 2.
    Ye, L. and Haupt, K., Anal. Bioanal. Chem., 2004, vol. 378, p. 1887.CrossRefPubMedGoogle Scholar
  3. 3.
    Dickert, F.L., Lieberzeit, P., and Tortschanoff, M., Sens. Actuators, B, 2000, vol. 65, nos. 1–3, p. 186.CrossRefGoogle Scholar
  4. 4.
    Haupt, K. and Mosbach, K., Chem. Rev., 2000, vol. 100, no. 7, p. 2495.CrossRefPubMedGoogle Scholar
  5. 5.
    Ermolaeva, T.N., Chernyshova, V.N., Chesnokova, E.V., and Bessonov, O.I., Sorbtsionnye Khromatogr. Protsessy, 2015, vol. 15, no. 2, p. 151.Google Scholar
  6. 6.
    Ermolaeva, T.N., Chernyshova, V.N., and Bessonov, O.I., Sorbtsionnye Khromatogr. Protsessy, 2015, vol. 15, no. 3, p. 345.Google Scholar
  7. 7.
    Wulff, G., Angew. Chem., Int. Ed. Engl., 1995, vol. 34, p. 1812.CrossRefGoogle Scholar
  8. 8.
    Mosbach, K., Trends Biochem. Sci., 1994, vol. 19, p. 9.CrossRefPubMedGoogle Scholar
  9. 9.
    Yaqub, S., Latif, U., and Dickert, F.L., Sens. Actuators, B, 2011, vol. 160, p. 227.CrossRefGoogle Scholar
  10. 10.
    Gültekin, A., Karanfil, G., Sönmezoğlu, S., and Say, R., Mater. Sci. Eng., C, 2014, vol. 42, p. 436.CrossRefGoogle Scholar
  11. 11.
    Wu, A.H. and Syu, M.J., Biosens. Bioelectron., 2006, vol. 21, p. 2345.CrossRefPubMedGoogle Scholar
  12. 12.
    Tsuru, N., Kikuchi, M., Kawaguchi, H., and Shiratori, S., Thin Solid Films, 2006, vol. 499, p. 380.CrossRefGoogle Scholar
  13. 13.
    Shoji, R., Takeuchi, T., and Kubo, I., Anal. Chem., 2003, vol. 75, no. 18, p. 4882.CrossRefPubMedGoogle Scholar
  14. 14.
    Panasyuk-Delaney, T., Mirsky, V.M., and Wolfbeis, O.S., Electroanalysis, 2002, vol. 14, p. 221.CrossRefGoogle Scholar
  15. 15.
    Lotierzo, M., Henry, O.Y.F., Piletsky, S.A., and Tothill, I., Biosens. Bioelectron., 2005, vol. 20, no. 11, p. 2197.CrossRefGoogle Scholar
  16. 16.
    Kubo, I., Fuchiwaki, Y., and Nakane, Y., Mater. Sci., 2012.
  17. 17.
    Peeters, M., Austin J. Biosens. Bioelectron., 2015, vol. 1, no. 3, p. 1011.Google Scholar
  18. 18.
    Kikuchi, M., Tsuru, N., and Shiratori, S., Sci. Technol. Adv. Mater., 2006, vol. 7, p. 156.CrossRefGoogle Scholar
  19. 19.
    Dickert, F.L., Hayden, O., and Bindeus, R., Anal. Bioanal. Chem., 2004, vol. 378, no. 8, p. 1929.CrossRefPubMedGoogle Scholar
  20. 20.
    Fuchs, Y., Soppera, O., and Haupt, K., Anal. Chim. Acta, 2012, vol. 717, p. 7.CrossRefPubMedGoogle Scholar
  21. 21.
    Avila, M., Zougagh, M., and Rios, A., TrAC, Trends Anal. Chem., 2008, vol. 27, no. 1, p. 54.CrossRefGoogle Scholar
  22. 22.
    Karaseva, N., Ermolaeva, T., and Mizaikoff, B., Sens. Actuators, B, 2016, vol. 225, p. 199.CrossRefGoogle Scholar
  23. 23.
    Haupt, K., Analyst, 2001, vol. 126, p. 747.CrossRefPubMedGoogle Scholar
  24. 24.
    Koohpaei, A.R., Shahtaheri, S.J., and Ganjali, M.R., Talanta, 2008, vol. 75, p. 978.CrossRefPubMedGoogle Scholar
  25. 25.
    Lenain, P., De Saeger, S., Mattiasson, B., and Hedström, M., Biosens. Bioelectron., 2015, vol. 69, p. 34.CrossRefPubMedGoogle Scholar
  26. 26.
    Adali-Kaya, Z., Tse Sum Bui, B., Falcimaigne-Cordin, A., and Haupt, K., Angew. Chem., Int. Ed. E-ngl., 2015, vol. 54, no. 17, p. 5192.CrossRefGoogle Scholar
  27. 27.
    Shi, X., Wu, A., Qu, G., Li, R., and Zhang, D., Biomaterials, 2007, vol. 28, p. 3741.CrossRefPubMedGoogle Scholar
  28. 28.
    Kudrinskaya, V.A., Dmitrienko, S.G., and Zolotov, Yu.A., Moscow Univ. Chem. Bull. (Engl. Transl.), 2009, vol. 64, no. 3, p. 124.Google Scholar
  29. 29.
    Zyablov, A.N., Khal’zova, S.A., and Selemenev, V.F., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2017, vol. 60, no. 7, p. 42.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Lipetsk State Technical UniversityLipetskRussia

Personalised recommendations