Journal of Analytical Chemistry

, Volume 74, Issue 8, pp 816–824 | Cite as

Voltammetric Determination of Flavonoids in Medicinal Plant Materials Using Electrodes Modified by Cerium Dioxide Nanoparticles and Surfactants

  • G. K. ZiyatdinovaEmail author
  • S. P. Zakharova
  • E. R. Ziganshina
  • H. C. Budnikov


Methods for the voltammetric determination of flavonoids (rutin and quercetin) using electrodes modified with CeO2 nanoparticles and various surfactants have been developed . The voltammetric characteristics of analytes are most properly recorded on a glassy carbon electrode modified with CeO2 nanoparticles dispersed in anionic sodium dodecyl sulfate. The electro-oxidation of quercetin and rutin is adsorption-controlled and proceeds with the participation of two electrons and two protons. Under conditions of differential pulse voltammetry in a Britton–Robinson buffer solution with pH 2.0, the analytical ranges are 0.01–1.0 and 1.0–250 µM for quercetin and 0.10–100 µM for rutin with the limits of detection (S/N = 3) of 2.9 and 28 nM, respectively. The proposed approaches were tested in analyzing water and alcohol extracts from medicinal plant materials (St. John’s wort herb, marigold flowers, and bearberry leaves). The conditions for the extraction of flavonoids from raw materials with ethanol are found. The results of the voltammetric determination of quercetin and rutin in plant raw materials correlate with the total flavonoids according to spectrophotometry: r = 0.929 with rcrit = 0.521 for n = 11 in the case of quercetin and r = 0.951 at rcrit = 0.729 for n = 6 for rutin.


voltammetry chemically modified electrodes nanoparticles of metal oxides surfactants flavonoids medicinal plant materials 



  1. 1.
    Ziyatdinova, G.K. and Budnikov, H.C., Russ. Chem. Rev., 2015, vol. 84, no. 2, p. 194.CrossRefGoogle Scholar
  2. 2.
    Panche, A.N., Diwan, A.D., and Chandra, S.R., J. Nutr. Sci., 2016, vol. 5.Google Scholar
  3. 3.
    Anand David, A.V., Arulmoli, R., and Parasuraman, S., Pharmacogn. Rev., 2016, vol. 10, no. 20, p. 84.CrossRefGoogle Scholar
  4. 4.
    Nijveldt, R.J., van Nood, E., van Hoorn, D.E., Boelens, P.G., van Norren, K., and van Leeuwen, P.A., Am. J. Clin. Nutr., 2001, vol. 74, no. 4, p. 418.CrossRefGoogle Scholar
  5. 5.
    Ziyatdinova, G., Aytuganova, I., Nizamova, A., Morozov, M., and Budnikov, H., Collect. Czech. Chem. Commun., 2011, vol. 76, no. 12, p. 1619.CrossRefGoogle Scholar
  6. 6.
    Saber-Tehrani, M., Pourhabib, A., Husain, S.W., and Arvand, M., Anal. Bioanal. Electrochem., 2013, vol. 5, no. 1, p. 1.Google Scholar
  7. 7.
    Wang, J., Zhou, N.D., Zhu, Z.Q., Huang, J.Y., and Li, G.X., Anal. Bioanal. Chem., 2007, vol. 388, nos. 5–6, p. 1199.CrossRefGoogle Scholar
  8. 8.
    Wang, M.Y., Zhang, D.E., Tong, Z.W., Xu, X.Y., and Yang, X.J., J. Appl. Electrochem., 2011, vol. 41, no. 2, p. 189.CrossRefGoogle Scholar
  9. 9.
    Muti, M., Gençdağ, K., Nacak, F.M., and Aslan, A., Colloids Surf., B, 2013, vol. 106, p. 181.CrossRefGoogle Scholar
  10. 10.
    Santos, D.P., Bergamini, M.F., Santos, V.A.F.F., Furlan, M., and Zanoni, M.V.B., Anal. Lett., 2007, vol. 40, no. 18, p. 3430.CrossRefGoogle Scholar
  11. 11.
    Franzoi, A.C., Spinelli, A., and Cruz Vieira, L., J. Pharm. Biomed. Anal., 2008, vol. 47, nos. 4–5, p. 973.CrossRefGoogle Scholar
  12. 12.
    Chen, X., Wang, Z., Zhang, F., Zhu, L., Li, Y., and Xia, Y., Chem. Pharm. Bull., 2010, vol. 58, no. 4, p. 475.CrossRefGoogle Scholar
  13. 13.
    Sun, W., Yang, M.X., Li, Y.Z., Jiang, Q., Liu, S.F., and Jiao, K., J. Pharm. Biomed. Anal., 2008, vol. 48, no. 5, p. 1326.CrossRefGoogle Scholar
  14. 14.
    Gupta, V.K., Golestani, F., Ahmadzadeh, S., Karimi-Maleh, H., Fazli, G., and Khosravi, S., Int. J. Electrochem. Sci., 2015, vol. 10, no. 4, p. 3657.Google Scholar
  15. 15.
    Kan, X., Zhang, T., Zhong, M., and Lu, X., Biosens. Bioelectron., 2016, vol. 77, p. 638.CrossRefGoogle Scholar
  16. 16.
    Reddaiah, K., Reddy, T.M., Raghu, P., and Swa-my, B.E.K., Anal. Bioanal. Electrochem., 2012, vol. 4, no. 2, p. 122.Google Scholar
  17. 17.
    Sun, S., Zhang, M., Li, Y., and He, X., Sensors, 2013, vol. 13, no. 5, p. 5493.CrossRefGoogle Scholar
  18. 18.
    Manokaran, J., Muruganantham, R., Muthukrishnaraj, A., and Balasubramanian, N., Electrochim. Acta, 2015, vol. 168, p. 16.CrossRefGoogle Scholar
  19. 19.
    Ziyatdinova, G., Kozlova, E., and Budnikov, H., J. Electroanal. Chem., 2018, vol. 821, p. 73.CrossRefGoogle Scholar
  20. 20.
    Yang, S., Qu, L., Li, G., Yang, R., and Liu, C., J. Electroanal. Chem., 2010, vol. 645, no. 2, p. 115.CrossRefGoogle Scholar
  21. 21.
    Ziyatdinova, G. and Budnikov, H., in Nanoanalytics: Nanoobjects and Nanotechnologies in Analytical Chemistry, Shtykov, S. Ed., Berlin: De Gruyter, 2018, p. 223.Google Scholar
  22. 22.
    Ziyatdinova, G., Ziganshina, E., Romashkina, S., and Budnikov, H., Electroanalysis, 2017, vol. 29, no. 4, p. 1197.CrossRefGoogle Scholar
  23. 23.
    Ziyatdinova, G., Ziganshina, E., Shamsevalieva, A., and Budnikov, H., Arabian J. Chem., 2017.
  24. 24.
    Ziyatdinova, G., Ziganshina, E., Cong, P.N., and Budnikov, H., Food Anal. Methods, 2017, vol. 10, no. 1, p. 129.CrossRefGoogle Scholar
  25. 25.
    Japanese Pharmacopoeia XVI, Tokyo: Pharmaceutical and Medical Device Regulatory Science Society of Japan, 2011.Google Scholar
  26. 26.
    Biesaga, M., Stafiej, A., and Pyrzynska, K., Chromatographia, 2007, vol. 65, nos. 11–12, p. 701.CrossRefGoogle Scholar
  27. 27.
    Samatha, T., Shyamsundarachary, R., Srinivas, P., and Swamy, N.R., Asian J. Pharm. Clin. Res., 2012, vol. 5, no. 4, p. 177.Google Scholar
  28. 28.
    Berg, J.M., Romoser, A., Banerjee, N., Zebda, R., and Sayes, C.M., Nanotoxicology, 2009, vol. 3, no. 4, p. 276.CrossRefGoogle Scholar
  29. 29.
    Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 2001, 2nd ed.Google Scholar
  30. 30.
    Liu, W.Y. and Guo, R., J. Colloid Interface Sci., 2006, vol. 302, no. 2, p. 625.CrossRefGoogle Scholar
  31. 31.
    Yakovleva, K.E., Kurzeev, S.A., Stepanova, E.V., Fedorova, T.V., Kuznetsov, B.A., and Koroleva, O.V., Appl. Biochem. Microbiol., 2007, vol. 43, no. 6, p. 661.CrossRefGoogle Scholar
  32. 32.
    Kurzawa, M., Anal. Lett., 2010, vol. 43, no. 6, p. 993.CrossRefGoogle Scholar
  33. 33.
    Muley, B.P., Khadabadi, S.S., and Banarase, N.B., Trop. J. Pharm. Res., 2009, vol. 8, no. 5, p. 455.CrossRefGoogle Scholar
  34. 34.
    Panusa, A., Petrucci, R., Marrosu, G., Multari, G., and Gallo, F.R., Phytochemistry, 2015, vol. 115, p. 79.CrossRefGoogle Scholar
  35. 35.
    Wach, A., Pyrzynska, K., and Biesaga, M., Food Chem., 2007, vol. 100, no. 2, p. 699.CrossRefGoogle Scholar
  36. 36.
    Gosudarstvennaya Farmakopeya Rossiiskoi Federatsii XIII (State Pharmacopoeia of the Russian Federation), Moscow, 2015, vol. 2.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • G. K. Ziyatdinova
    • 1
    Email author
  • S. P. Zakharova
    • 1
  • E. R. Ziganshina
    • 1
  • H. C. Budnikov
    • 1
  1. 1.Butlerov Institute of Chemistry, Kazan Federal UniversityKazanRussia

Personalised recommendations